
SCIAENGINEER

Advanced Training Steel Connections

All information in this document is subject to modification without prior notice. No part of this manual may be reproduced, stored in a database or retrieval system or published, in any form or in any way, electronically, mechanically, by print, photo print, microfilm or any other means without prior written permission from the publisher. SCIA is not responsible for any direct or indirect damage because of imperfections in the documentation and/or the software.

© Copyright 2015 SCIA nv. All rights reserved.

Table of contents

1.	In	troduc	ction5	
2.	C	reatior	n of a small example in SCIA Engineer6	
	2.1.	Mode	eling the example	6
	2.2.		t of the connection	
	2.3.		k and update of stiffness	
3.	2.4. Pr		nection does not satisfy the checks	. 11
-			-	
4.	C		of the connection (unity check)13	
	4.1.		eral data	
	4.2. 4.3.		mn web panel in shear mn web in compression	
	4.4.	Bean	n flange and web in compression	. 17
	4.5.		stance of the T-stub	
	4.	5.1.	Principle of a T-stub calculation	. 17
	4.	5.2.	Bolts info	. 20
	4.	5.3.	Column flange	. 20
	4.	5.4.	End plate	. 27
	4.	5.5.	Potential tension resistance for each bolt row	. 35
	4.6.		ulation of MRd	
	4.7. 4.8.		ulation of NRdulation of VRd	
	4.0. 4.9.		/ checks	
	-	9.1.	Influence of the normal force	
	4	9.2.	General unity checks	
5.		•	s of the connection	
	5.1.	The I	Noment-Rotation characteristic	. 43
	5.2.		ulation of the stiffness	
	5.	2.1.	General formulas	. 46
		2.2.	Calculation of the stiffness in detail	
	5.3.		classification on stiffness	
	5.4. 5.5.		sferring the joint stiffness to the analysis model required stiffness	
6.			tion of welds	. 55
	61	Defa	ult method	. 63
	6.2.		ulation of a _f	
	6.3.		ulation of a _w	
7	6.4.		ulation with the internal forces	. 66
7.			/ class	
	7.1. 7.2.		ility classes ility classification for bolted joints	
	7.2. 7.3.		ility classification for welded joints	
8.	E		otions in SCIA Engineer	
	8.1.	RHS	beam	. 69
	8.2.	Colu	mn in minor axis configuration	. 69
	8.3.		plate connections: shear iron, flange wideners	
	8.4.		a options for the calculation of connections	
		4.1.	Copy of connections	
	-	4.2.	Multiple check of connections	
		4.3.	Expert system	
	-	4.4.	The use of 4 bolts / row	
	8.	4.5.	Monodrawings	. 74

9.		Options in the properties window	
10.	Pinne	d joints	82
10).1.	Welded fin plate connection	
10).2.	Bolted fin plate connection	
10	.3.	Bolted cleat connection	
10	.4.	Flexible end plate connection	
Refe	rences	and literature	89

1. Introduction

This course will explain the calculation of steel connections in SCIA Engineer following the EN 1993-1-8: Design of steel structures – Part 1-8: Design of joints.

Most of the options in the course can be calculated/checked in SCIA Engineer with the Steel edition.

For some supplementary checks an extra module (or edition) is required, but this will always be indicated in those paragraphs.

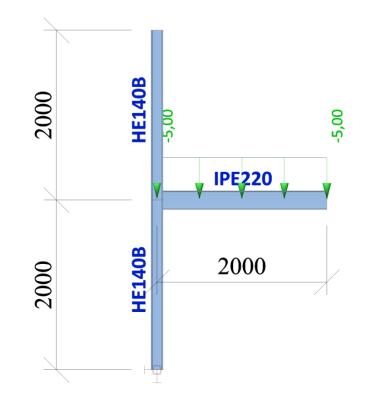
The design methods for connection design are explained. More details and references to the applied articles can be found in (Ref.[2]).

The following chapters are valid for the bolted and welded column-beam joints. The design methods for the beam-column joints are principally for moment-resisting joints between I or H sections in which the beams are connected to the flanges of the column. In this document we will describe the total procedure for this type of connection. The other connection types can be found at the end of this document.

2. Creation of a small example in SCIA Engineer

2.1. Modeling the example

First in this chapter a small example in SCIA Engineer will be shown. Afterwards all principles and the theoretical background will be explained in the next chapter.


Create a new project in Frame XYZ, activate the material Steel S235 and activate the functionality Frame rigid connections.

Scia	Dynamics		Steel	
SCIA	Initial stress		Fire resistance	
Iginoon	Subsoil		Connection modeller	
	Nonlinearity		Frame rigid connections	V
	Stability		Frame pinned connections	
	Climatic loads		Grid pinned connections	
	Prestressing		Bolted diagonal connections	
	Pipelines		Expert system	
	Structural model		Connection monodrawings	
	BIM properties		Scaffolding	
	Parameters		LTB 2nd Order	
	Mobile loads		ArcelorMittal	
	Automated GA drawings			
	LTA - load cases			
	External application checks			
	Property modifiers			
	Bridge design			
	Customized design form			
	Old style document			

The following options are available for connections:

Connection Modeller:	With this option you can only model a connection and not run a calculation of a connection. If you want to calculate the connection, don't activate this functionality!
Frame rigid connections:	Calculation of bolted and welded (rigid and semi-rigid) connections.
Fame pinned connections:	Calculation of pinned connections
Grid pinned connections:	Calculation of pinned connection in the horizontal plane
Bolted diagonal connections:	Calculation of bolted diagonals
Expert system:	Use a library with default connections in SCIA Engineer or add your own connections to this library
Connection monodrawings:	Make some nice overview drawings of your connection(s)

Choose for the column a **HE140B** profile and for the beam an **IPE220** with the following geometry and the only load is a **line load of 5 kN/m on the beam** (no self weight).

2.2. Input of the connection

Calculate the model and go to the **Steel** menu.

The beam is connected with the strong axis of the column, so we choose in this menu for "Connections -> Frame bolted/welded-strong axis". Double-click on this option and select the node between the column and the beam to input the connection.

In the properties window of the connection, you can activate what you want to add at the connection. We choose for a **Frame bolted** connection and we add an end plate. By clicking on the three dots behind the endplate option, you can adapt the endplate and we change it into:

Properties		₽×
Steel Connection (1)	🖃 Va V/	0
	6	
Name	Conn	
Node	N2	
Type of loads	Load cases	*
Load cases	LC1	-
Load case/Combination	All	*
Frame type	braced	*
Connection geometry	Simple T	
Side ->[B3]		
Connection type	Frame bolted	-
End plate	V	
Backing plate		
Bolts		
Haunch		
Top stiffener		
Bottom stiffener		
Diagonal stiffener		
Web doubler		
Update stiffness		
Length for stiffness classification [m]	2,000	
Weld		

Afterwards we can also add some bolts and change them again by clicking on the three dots behind it:

Properties P ×				
Steel Connection (1)				
	6 ×			
Name	Conn			
Node	N2			
Type of loads	Load cases 🔹			
Load cases	LC1 🔹			
Load case/Combination	Ali 👻			
Frame type	braced 🔹			
Connection geometry	Simple T			
□ Side ->[B3]				
Connection type	Frame bolted			
End plate	V			
Backing plate				
Bolts	 ✓			
Haunch				
Top stiffener				
Bottom stiffener				
Diagonal stiffener				
Web doubler				
Update stiffness				
Calculation type for loadcase/comb 💌				
Output Normal 👻				
Length for stiffness classification [m]	2,000			
Stiffeners				
Between bolt-rows 1 2	V			
Weld				

To check the connection, you have to click on refresh.

With the option "Results" you can have a short output of the connection:

Name	Conn
Design moment resistance Mrd [kNm]	34,91
Design shear resistance Vrd [kN]	188,10
Design normal resistance Nrd [kN]	245,40
Unity check M/MRd [-]	0,29
Unity check V/VRd [-]	0,05
Unity check M/MRd + N/NRd [-]	0,29
Result of stiffness: Sj [MNm/rad]	1,1602e+01
Result of stiffness: Sj,ini [MNm/rad]	1,1602e+01
M [kNm]	-10,00
/ [kN]	10,00
N [kN]	0.00
Check M	Connection satisfied
Check V	Connection satisfied
Check MN	Connection satisfied
Check of stiffness	Not applicable.
Limit part	End plate in tension
Limit part compression	Column web in shear
Load case/Combination	LC1
Beam	B3
Load case/Combination Beam	201

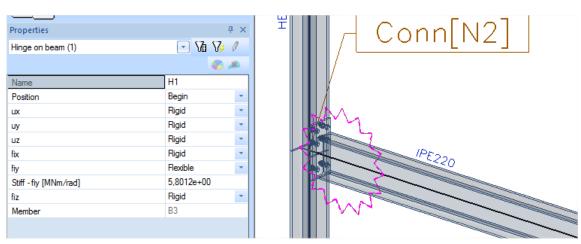
Summary of the results shown in this window:

Name	Name of the connection in SCIA Engineer
Design moment resistance Mrd [kNm]	Moment resistance of the connection
Design moment resistance Vrd [kN]	Shear resistance of the connection
Design moment resistance Nrd [kN]	Normal force resistance of the connection
Unity check M/MRd	Unity check of the moment
Unity check V/VRd	Unity check of the shear force
Unity check M/MRd + N/NRd	Unity check of the moment and normal force
Result of stiffness: Sj [MNm/rad]	Stiffness of the connection at the moment Med
Result of stiffness: Sj,ini [MNm/rad]	Stiffness of the connection for small moments
M [kNm]	MEd of the connection
V [kN]	VEd of the connection
N [kN]	NEd of the connection
Check M	Shows if the unity check for the moment check will not exceed 1.00
Check V	Shows if the unity check for the shear force check will not exceed 1.00
Check MN	Shows if the unity check for the normal force check will not exceed 1.00
Check of stiffness	Checks if the stiffness taken into account in the calculation is between the boundaries of the real stiffness of the connection.
Limit part	Shows the limiting part for the tension component
Limit part compression	Shows the limiting part for the compression component
Beam	The check is done for the beam, shown here.

2.3. Check and update of stiffness

The check of stiffness is shown here as "Not applicable" because this check is not activated. You can activate the stiffness check under the chapter "Connections Setup -> Frame bolted/welded -> Apply stiffness classification check"

⊒ - Standard EN	Name	Standard	I EN		
⊡ Connection		Connection			
General data Frame bolted/welded	General data				
Base plate	Frame bolted/weld	led			
Expert system	Transformation of effo	rts In axis			
Bolted diagonal	Weld size of haunch	Length			
Thickness	Allowable relative error	r for moments [%] [-] 5,00			
	Omitting weld in beff [FcRd] 📃 no			
	Include stress in colum	nn flange 📃 no			
	Capacity of beam flan	ge Prof+Hau	unch		
	Use alternative metho	d for Pt,Rd,1			
	Always adapt stiffener	s 🗖 no			
	Always adapt weldsize	es 🗖 no			
	Apply stiffness classifie	cation check 🛛 🕅 yes			
	Use internal forces for	weld size calculation			
	Use stiffeners in colum	nn web panel resistance			


With this check you can check if the stiffness taken into account in the calculation is between the boundaries of the real stiffness of the connection.

More information about the check of the stiffness will be given further in this document.

To take into account the real stiffness of the connection in the calculation, you can activate the option "Update stiffness" in the properties window of the connection.

Properties 🛛 🕂 🗙				
Steel Connection (1)	🖃 Va V/ 🖉			
	6 🔊			
Name	Conn			
Node	N2			
Type of loads	*Load cases 🔹			
Load cases	LC1 🔹			
Load case/Combination	All <			
Frame type	braced 💌			
Connection geometry	Simple T			
Side ->[B3]				
Connection type	Frame bolted 🔹			
End plate	✓ …			
Backing plate				
Bolts	V			
Haunch				
Top stiffener				
Bottom stiffener				
Diagonal stiffener				
Web doubler				
Update stiffness	V			
Calculation type	for loadcase/comb 💌			
Output	Normal <			
Length for stiffness classification [m]	2,000			
Stiffeners				
Between bolt-rows 1 2				
Between bolt-rows 2 3				
Weld				
Actions				

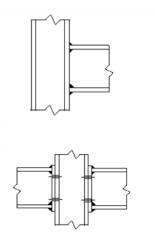
If this option is activated, a hinge will be input on the connection with the stiffness of the connection after reculating the project.

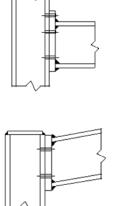
2.4. Connection does not satisfy the checks

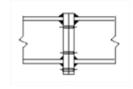
If the check is not okay, this will be indicated by a red color as. When changing the load from 5 kN/m to 20 kN/m, the following result will be shown for this same connection:

Name	Conn
Design moment resistance Mrd [kNm]	34,91
Design shear resistance Vrd [kN]	188,10
Design normal resistance Nrd [kN]	245,40
Unity check M/MRd [-]	1,15
Unity check V/VRd [-]	0,21
Unity check M/MRd + N/NRd [-]	1,15
Result of stiffness: Sj [MNm/rad]	2,6889e+00
Result of stiffness: Sj,ini [MNm/rad]	1,1602e+01
M [kNm]	-40,00
V [kN]	40,00
N [kN]	0,00
Check M	Connection NOT satisfied
Check V	Connection satisfied
Check MN	Connection NOT satisfied
Check of stiffness	Not applicable.
Limit part	End plate in tension
Limit part compression	Column web in shear
Load case/Combination	LC1
Beam	B3

In this case the Unity check for the moment and for the moment + normal force is not okay.

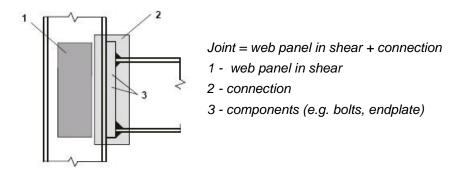

If the connection does not satisfy the check, you can see the limiting parts. So for this connection we have to adapt or the endplate (for the tension side) or we have to stiffen the column web (for the compression checks).


I will change the load again to 5 kN/m afterwards, because all checks are explained in the next chapter using this example.


3. Possible connections in SCIA Engineer

The design methods for the column-beam joints are taken from EN 1933-1-8. More detailed information about the applied rules and specific implementations are found in Ref.[1].

The following column-beam and beam-beam connections are possible in SCIA Engineer:



Only the following cross-sections can be used for connections in SCIA Engineer:

Rolled I beam	RHS – Rolled hollow section	Built up I setion (made of a flat and T section)
	L_	
Symmetrical welded I section (made of three flats)	Asymmetrical welded I section (made of three flats)	I section with a haunch (elements with variable height)

In the checks in SCIA Engineer not only the connection itself will be checked, but also the total joint. A joint is the connection and the web panel in shear, as shown in the picture below.

4. Check of the connection (unity check)

The whole check of the chapters below will be discussed using the example made in the chapter "Creation of a small example in SCIA Engineer" or using example "CON_004.esa".

When looking in SCIA Engineer at the detailed output you will find the detailed calculation of SCIA Engineer.

Properties		Ψ×
Steel Connection (1)		🖃 Va V/ 🖉
		* *
Name	Conn	
Node	N2	
Type of loads	Load cases	*
Load cases	LC1	•
Load case/Combination	All	Ψ.
Frame type	braced	Ψ.
Connection geometry	Simple T	
□ Side ->[B3]		
Connection type	Frame bolted	· ·
End plate		
Backing plate		
Bolts		
Haunch		
Top stiffener		
Bottom stiffener		
Diagonal stiffener		
Web doubler		
Update stiffness		
Calculation type	for loadcase/combinations	*
Output	Detailed	*
Length for stiffness classification [m]	2,000	
Stiffeners		
Between bolt-rows 1 2		
Between bolt-rows 2 3		
Weld		
Actions		
Refresh		>>>
Open Preview		>>>
Results		B3
Setup of all connections		>>>
Bolt assembly		>>>

In this document we will describe all checks in SCIA Engineer step by step based on EN 1993-1-8. Ref.[1].

4.1. General data

In the preview in SCIA Engineer, first general data about the used sections, the used bolts, ...

Name	Conn	Conn							
Node	N2	N2							
Connection type	Frame	Frame bolted							
Connection geometry	Simple	т							
Connected beams	Name	CrossSection	Length [m]	Shape	Beg. node	End node	Туре	FEM type	Layer
	B1	CS1 - HE140B	2,000	Line	N1	N2	column (100)	standard	Layer1
	B2	CS1 - HE140B	2,000	Line	N2	N3	column (100)	standard	Layer1
	B3	CS2 - IPE220	2,000	Line	N2	N4	beam (80)	standard	Layer1

Type Name	Bolts			
Internal bolts distance [mm]				80,0
External bolts distance [mm]				80,0
Selected bolt assembly	M16 - 8.			
Length [mm]	_	50,0		
1.Location [mm]				250,0
2.Location [mm]				180,0
4.Location [mm]				40,0
Bolt pattern				bolts/ro
Bolt assembly	Type Name		Bolt	assembl
	Name		N	/16 - 8
	Selected			ISO 401
	bolt			
	Selected		M16 -	ISO 708
	washer Selected		1412	ISO 403
	nut		M10 -	150 403
	Washer at			
	the nut			
	Washer at the head			
	Nut grade			
	Bolt			8
	grade			
	Ultimate			800,00
	tensile strength			
	[N/mm ²]			
	Туре			Norm
	Delta [mm]			7,0
Bolts	fuund		Type Name	Bo
DOILS			Name	M16
			Mairie	IS
				401
			Bore hole	18,0
			[mm]	
			Diameter of wrench	80,0
			required for	
			bolt [mm]	
			Head diameter [mm]	24,0
			Diagonal head	26,7
			diameter [mm]	
			Head height	10,0
			[mm] Gross	201,0
			cross-section	201,
			area [mm ²]	
			Tensile stress area [mm ²]	157,0
			Diameter [mm]	16,0
Nut	Type Name		[]	Nut
	Name		M16 - IS	
	Diameter			24,00
	[mm]			
	Diagonal diameter			26,20
	[mm]			
	Height [mm]			13,00
Washer	Type Name	Washer		
	Name		M16 -	ISO 70
	Internal			17,0
	diameter [mm]			
	External			30,0
	diameter			30,0
	[mm]			
	Thickness	1		3,3

Name	End
Material	S 235
Thickness[mm]	12,00
Top [mm]	70,00
Bottom [mm]	15,00
Left [mm]	15,00
Right [mm]	15,00
Width [mm]	140,00
Height [mm]	305,00

Afterwards the safety factors according EN 1993-1-8 are shown:

According to EN 1993-1-8 National annex: Standard EN

Partial	safety factor	S
Gamma	M0	1.00
Gamma	M1	1.00
Gamma	M2	1.25
Gamma	M3	1.25

Those safety factors can be adapted in the National Annex Setup in SCIA Engineer.

And afterwards the internal forces are shown for the chosen load case or combination:

```
1.Internal forces
```

LC1		
Ν	0.00	kN
Vz	10.00	kN
My	-10.00	kNm

Tension top

The internal forces, shown here, will result in the biggest unity check or in a stiffness check which is not okay.

You can see in this example that we have a negative moment, so we have tension in the top flange of the beam. If we have tension in the bottom flange of the beam, the whole calculation is the same, but the first bolt-row will be taken as the bottom one.

4.2. Column web panel in shear

As shown in SCIA Engineer, this will be calculated following EN 1993-1-8, art. 6.2.6.1:

$$V_{wp,Rd} = \frac{0.9f_{y,w}A_v}{\sqrt{3}\gamma_{M0}}$$

Shear area of the column:

 $A_{vc} = A - 2 \cdot b \cdot t_f + (t_w + 2r) \cdot t_f$ $A_{vc} = 4300 - 2 \cdot 140 \cdot 12 + (7 + 2 \cdot 12) \cdot 12 = 1312 \text{ mm}^2$

$$V_{wp,Rd} = \frac{0.9 f_{y,w} A_v}{\sqrt{3} \gamma_{M0}} = \frac{0.9 \cdot 235 \cdot 1312}{\sqrt{3} \cdot 1} \cdot 10^{-3} = \mathbf{160}, \mathbf{2} \ kN$$

In SCIA Engineer:

2.1. Design resistance of basic components2.1.1. Column web panel in shear (EN 1993-1-8 art. 6.2.6.1)		
Column web in shear (Vwp,Rd) data		
Column web in shear (Vwp,Rd)	160.21	kN
Beta	1.00	
Avc	1312.00	m m ^ 2

4.3. Column web in compression

As shown in SCIA Engineer, this will be calculated following EN 1993-1-8, art. 6.2.6.2:

(6.9):
$$F_{c,wc,Rd} = \frac{\omega \cdot k_{wc} \cdot b_{eff,c,wc} \cdot t_{wc} \cdot f_{y,wc}}{\gamma_{M0}} \quad \text{but} \qquad F_{c,wc,Rd} \le \frac{\omega \cdot k_{wc} \cdot \rho \cdot b_{eff,c,wc} \cdot t_{wc} \cdot f_{y,wc}}{\gamma_{M1}}$$

(6.11): $b_{eff} = t_{fb} + 2\sqrt{2}a_p + 5(t_{fc} + s) + s_p$ $s_p = 12 + (15 - \sqrt{2} \cdot 5) = 19,93$

> Above the bottom flange, there is sufficient room to allow 45° dispersion Below the bottom flange, there is NOT sufficient room. Thus the dispersion is limited.

$$b_{eff} = 9,2 + 2\sqrt{2} \cdot 5 + 5(12 + 12) + 19,93 = 163,27mm$$

Table 5.4: $\beta = 1 \Rightarrow$ Table 6.3: $\omega = \omega_1$

$$\omega = \omega_1 = \frac{1}{\sqrt{1 + 1.3(b_{eff,c,wc}\frac{t_{wc}}{A_{vc}})^2}} = \frac{1}{\sqrt{1 + 1.3(162.3\frac{7}{1312})^2}} = 0.71$$

 $k_{wc} = 1$

$$F_{c,wc,Rd} = \frac{\omega \cdot k_{wc} \cdot b_{eff,c,wc} \cdot t_{wc} \cdot f_{y,wc}}{\gamma_{M0}} = \frac{0.71 \cdot 1 \cdot 162.27 \cdot 7 \cdot 235 \cdot 10^{-3}}{1} = 190,7 \ kN$$

In SCIA Engineer:

2.1.2. Column web in compression (EN 1993-1-8 art. 6.2.6.2)

Column web in compression (Fc,wc,Rd) data		
Column web in compression (Fc,wc,Rd)	190.56	kN
beff, c, wc	163.27	mm
twc	7.00	mm
omega 1	0.71	
omega 2	0.45	
o me g a	0.71	
kwc	1.00	
lambda_rel	0.55	
reduction factor for plate buckling	1.00	
dwc	92.00	mm

4.4. Beam flange and web in compression

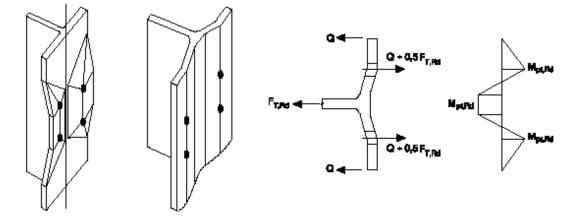
As shown in SCIA Engineer, this will be calculated following EN 1993-1-8, art. 6.2.6.7:

(6.21):
$$F_{c,fb,Rd} = \frac{M_{c,Rd}}{(h-t_{fb})} = \frac{W_{pl}f_{yb}}{\gamma_{M0}\cdot(h-t_{fb})} = \frac{285\cdot10^{3}\cdot235\cdot10^{-3}}{1\cdot(220-9,2)} = 317,7 \, kN$$

$$M_{c,Rd} = \frac{W_{pl}f_{yb}}{\gamma_{M0}} = \frac{285\cdot10^{3}mm^{3}\cdot235\cdot10^{-3}kN/mm^{2}}{1} = 66975 \, kNmm = 66,98 \, kNm$$
$$h - t_{fb} = 220 - 9,2 = 210,80 \, mm$$

$$F_{c,fb,Rd} = \frac{M_{c,Rd}}{(h-t_{fb})} = \frac{66975 \ kNmm}{210,80 \ mm} = 317,72 \ kN$$

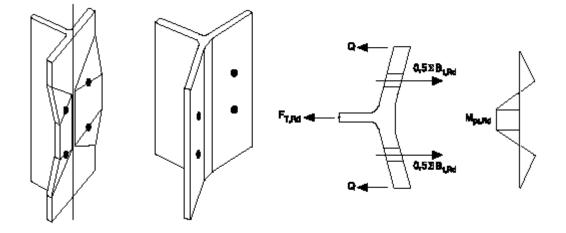
In SCIA Engineer:


2.1.3. Beam flange and web in compression (EN 1993-1-8 art. 6.2.6.7)			
Beam flange in compression (Fc,fb,Rd) data			
Beam flange in compression (Fc,fb,Rd)	317.72	kN	
section class	1		
M c , R d	66.98	kNm	
hb-tfb	210.80	mm	

4.5. Resistance of the T-stub

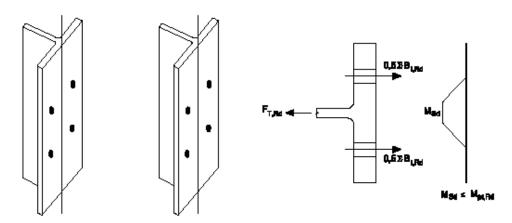
4.5.1. Principle of a T-stub calculation

The end plate bending and the column flange bending or bolt yielding, are analysed, using an equivalent T-stub. The three possible modes of failure of the flange of the T stub and the resistance strength for each mode are:


1. complete flange yielding

The bolts stay intact, only the column flange (or end plate) will yield.

 $F_{T,1,Rd} = \frac{4M_{pl,1,Rd}}{m}$ with: $M_{pl,1,Rd} = 0.25 \sum l_{eff,1} t_f^2 f_y / \gamma_{M0}$

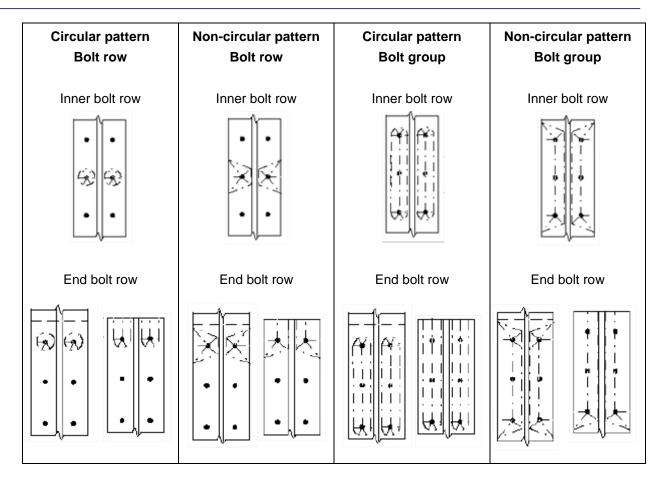

2. bolt failure with flange yielding

The bolts brake together with the yielding of the column flange (or end plate).

 $F_{T,2,Rd} = \frac{2M_{pl,2,Rd} + n\sum F_{t,Rd}}{m+n} \quad \text{with:} \quad M_{pl,2,Rd} = 0.25\sum l_{eff,2}t_f^2 f_y / \gamma_{M0}$

3. bolt failure

The bolts brake. But there is no influence on the column flange (or end plate).


$$F_{T,3,Rd} = \sum F_{t,Rd}$$

And the minimum of $F_{T,1,Rd}$, $F_{T,2,Rd}$ and $F_{T,3,Rd}$ is the limiting tension strength value for the bolt row or bolt group:

$F_{t,Rd} = min (F_{T,1,Rd}; F_{T,2,Rd}; F_{T,3,Rd})$

For the failure of the end plate or column flange, an effective length for the different bolt locations will be calculated.

We will assume the effective length for a bolt row or a bolt group and the failure mode could be with a circular pattern or with a non-circular pattern. In the table below some examples are shown for the circular and the non circular patterns:

Remark: The formulas given for the calculation of $F_{T,Rd}$ for the different failure mode are only applicable if Prying forces may develop. This criterion is given in EN 1993-1-8, Table 6.2:

Table 6.2: Design Resistance *F*_{T,Rd} of a T-stub flange

	Prying forces may develop, i.e. $L_b \leq L_b^*$		No prying forces
Mode 1	Method 1	Method 2 (alternative method)	
without backing plates	$F_{\mathrm{T},1,\mathrm{Rd}} = \frac{4M_{pl,1,Rd}}{m}$	$F_{\rm T,1,Rd} = \frac{(8n - 2e_w)M_{pl,1,Rd}}{2mn - e_w(m+n)}$	2 <i>M</i>
with backing plates	$F_{\mathrm{T},\mathrm{l},\mathrm{Rd}} = \frac{4M_{pl,\mathrm{l},\mathrm{Rd}} + 2M_{bp,\mathrm{Rd}}}{m}$	$F_{\rm T,1,Rd} = \frac{(8n - 2e_w)M_{pl,1,Rd} + 4nM_{bp,Rd}}{2mn - e_w(m+n)}$	$F_{\rm T,1-2,Rd} = \frac{2M_{pl,1,Rd}}{m}$
Mode 2	$F_{\mathrm{T},2,\mathrm{F}}$	$t_{td} = \frac{2M_{pl,2,Rd} + n\Sigma F_{t,Rd}}{m+n}$	
Mode 3	$F_{\mathrm{T},3,\mathrm{Rd}} = \Sigma F_{t,Rd}$		

If no prying forces may develop, Mode 1 and 2 will be calculated as follows:

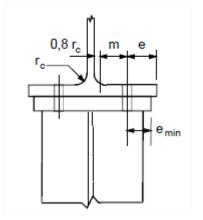
$$F_{T,1-2,Rd} = \frac{2M_{pl,2,Rd}}{m}$$

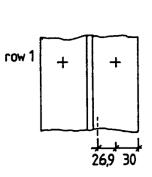
4.5.2. Bolts info

From the general data of the used bolts (M16 - 8.8) the tension resistance of one bolt can be calculated as follows:

$$F_{t,Rd} = \frac{0.9 \cdot f_{ub} \cdot A_s}{\gamma_M} = \frac{0.9 \cdot 800 \text{ MPa} \cdot 157 \text{ mm}^2}{1.25} = 90432 \text{ N} = 90.43 \text{ kN}$$

2.1.4. Design tension resistance of bolt-row


Ft,Rd data		
fub	800.00	MPa
As	157.00	mm^2
k2	0.90	-
Ft,Rd	90.43	kN
Lb	38.80	mm


Note: The bolt-rows are numbered starting from the bolt-row farthest from the centre of compression as specified in EN 1993-1-8 Article 6.2.7.2 (1).

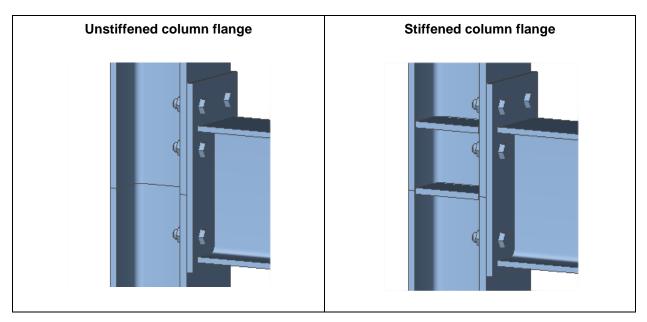
4.5.3. Column flange

4.5.3.1. General parameters

First some definitions of the parameters, following EN 1993-1-8 (Ref[1]), Figure 6.8 a:

e = 30 mm

 $m = \frac{b_c - t_{wc}}{2} - 0.8r - e$ (see also EN1993-1-8 (Figure 6.8)) $m = (140 - 7)/2 - 0.8 \cdot 12 - 30$ = 26.9 mm $e_{min} = 30 mm$ $n = e_{min}$ $\leq 1.25 \cdot m = 1.25 \cdot 26.9 = 33.6mm$ (see also EN1993-1-8 (Table 6.2)) n = 30mm


Row	p (p ₁ + p ₂)
1	0.0 + 35.0
2	35.0 + 70.0
3	70.0 + 0.0

And this is also shown in SCIA Engineer:

row	p (p1+p2)	alpha	е	e1	m	n
1	0.0+35.0	-	30.00	1860.00	26.90	30.00
2	35.0+70.0	-	30.00	-	26.90	30.00
3	70.0+0.0	-	30.00	1930.00	26.90	30.00

To calculate the column flange, we need to choose between the effective lengths of an unstiffened column flange (Table 6.4 En 1993-1-8 - Ref.[1]) or for the effective lengths of a stiffened column flange (Table 6.5 EN 1993-1-8 - Ref.[1]).

In this case the column flange is unstiffened. In the table below the difference is shown:

So in this example the following table is used for the calculation of the effective lengths:

Bolt-row	Bolt-row consider individually	ed	Bolt-row considered as part of a group of bolt-rows			
Location	Circular patterns	Non-circular patterns	Circular patterns	Non-circular patterns		
	ℓ _{eff,cp}	ℓ _{eff,nc}	ℓ _{eff,cp}	ℓ _{eff,nc}		
Inner bolt-row	2πm	4m + 1,25e	2p	р		
End bolt-row	The smaller of: $2\pi m$ $\pi m + 2e_1$	The smaller of: 4m + 1,25e $2m + 0,625e + e_1$	The smaller of: $\pi m + p$ $2e_1 + p$	The smaller of: 2m + 0.625e + 0.5p $e_1 + 0.5p$		
Mode 1:	$\ell_{eff,1} = \ell_{eff,nc} but \ell_{eff,1} \leq \ell_{eff,cp}$		$\sum \ell_{eff,1} = \sum \ell_{eff,nc}$ but	$\sum \ell_{\text{eff},1} \leq \sum \ell_{\text{eff},\text{cp}}$		
Mode 2:	$\ell_{eff,2} = \ell_{eff,nc}$		$\sum \ell_{eff,2} = \sum \ell_{eff,nc}$			

Table 6.4: Effective lengths for an unstiffened column flange

First we choose for each bolt row the location. In this example:

Row 1 and Row 3: End bolt-row Row 2: Inner bolt-row

And the same is shown in SCIA Engineer:

```
2.1.4.1. Column flange
According to EN 1993-1-8 Article 6.2.6.3, 6.2.6.4
(effective lengths in mm, resistance in kN)
row Bolt-row location
1 Other end bolt-row
2 Other inner bolt-row
3 Other end bolt-row
```

4.5.3.2. Ft,fc,Rd of bolt rows considered individually

The calculation of leff can be done using Table 6.4. of the EN 1993-1-8 (Ref.[1]).

Row 1

```
\begin{array}{l} {l_{eff} \mbox{ circular patterns: the smaller of:} \\ 2\pi m = 2^* 3.14^* 26,9 = \textbf{169,02} \\ \pi m + e_1 = 3.14^* 26,9 + 1860 = 1944,51 \end{array}
```

 $l_{\text{eff}} \text{ non-circular patterns: the smaller of:} \\ 4m + 1,25e = 4*26,9 + 1,25*30 = \textbf{145,10} \\ 2m + 0,625e + e_1 = 2*26,9 + 0,625*30 + 1860 = 1932,55$

Row 2

 l_{eff} circular patterns: $2\pi m = 2^*3.14^*26,9 = 169,02$ l_{eff} non-circular patterns: $4m + 1,25e = 4^*26,9 + 1,25^*30 = 145,10$

Row 3

 $\begin{array}{l} {}_{\text{leff}} \mbox{ circular patterns: the smaller of:} \\ 2\pi m = 2^* 3.14^* 26,9 = \textbf{169,02} \\ \pi m + e_1 = 3.14^* 26,9 + 1930 = 2014,51 \end{array}$

leff non-circular patterns: the smaller of:

4m + 1,25e = 4*26,9 + 1,25*30 = **145,10**

 $2m + 0,625e + e_1 = 2*26,9 + 0,625*30 + 1930 = 2002,55$

Row	l _{eff} circular patterns	l _{eff} non-circular patterns
1	169,02	145.10
2	169,02	145.10
3	169,02	145.10

In SCIA Engineer:

row	leff,cp,i	leff,nc,i
1	169.02	145.10
2	169.02	145.10
3	169.02	145.10

And now from the bottom of Table 6.4:

Mode 1:	$\ell_{\text{eff},1} \ = \ \ell_{\text{eff},\text{nc}} \text{but} \ell_{\text{eff},1} \ \le \ \ell_{\text{eff},\text{cp}}$
Mode 2:	$\ell_{eff,2} = \ell_{eff,nc}$

So this results in:

Mode 1 : $I_{eff,1} = I_{eff,nc}$ but $I_{eff,1} \leq I_{eff,cp}$ => I_{eff,1} = 145.10 Mode 2 : Ieff,2 = Ieff,nc => I_{eff,2} = 145.10

Now we can calculate M_{pl,1,Rd} and M_{pl,2,Rd} for the two modes, with the formula given at the bottom of Table 6.2 of the EN 1993-1-8 (Ref.[1])

$$M_{pl,1,Rd} = M_{pl,2,Rd} = 0.25 \sum l_{eff} t_f^2 f_y / \gamma_{M0} = \frac{0.25 \cdot 145.10 \cdot 12^2 \cdot 235 \cdot 10^{-3}}{1} = 1227.5 \ kNm$$

To decide which formula we are using for the calculation of FT,1,Rd and FT,2,Rd we have to check if prying forces may develop:

 L_b is the bolt elongation length, taken as equal to the grip length (total thickness of material and washers), plus half the sum of the height of the bolt head and the height of the nut.

$$L_{b} = t_{f} + t_{p} + t_{washer} + (h_{bolt_head} + h_{nut})/2$$

= 12 + 12 + 3,3 + (10 + 13)/2
= 38.8mm

Prying forces may develop if $L_b \leq L_b^*$ A is the tensile stress area of the bolt As

$$L_b^* = \frac{8.8 \, m^3 \, A_s}{\sum l_{eff} t_f^3} \cdot n_b = \frac{8.8 \, (26.9)^3 \cdot 157}{145, 10 \cdot (12)^3} \cdot 1 = 107 \, mm \text{ (see formula in Table 6.2 of EN 1993-1-8 (Ref.[1]))}$$

(with n_b = number of bolt rows)

 $\Rightarrow L_b < L_b^*$ ⇒ Prying forces may develop

So now we can use the formulas given in Table 6.2 En 1993-1-8 (Ref.[1]) to calculate the different mode. The effective lengths for all bolt-rows are the same so:

Mode 1: ${}^{4M_{p_{l,1,Rd}}} = {}^{4\cdot 1227,5} = 182,5 \ kN$ F_{7}

$$T_{T,1,Rd} = \frac{1}{m} = \frac{1}{26,9} = 18$$

Mode 2:

$$F_{T,2,Rd} = \frac{2M_{pl,2,Rd} + n\sum F_{t,Rd}}{m+n} = \frac{2\cdot 1227, 5+30\cdot 2\cdot 90, 43}{26,9+30} = 138,5 \ kN$$

Mode 3:

 $F_{T,3,Rd} = \sum F_{t,Rd} = 2 \cdot 90,43 = 180,9 \ kN$

 $F_{T,fc,Rd} = 138, 5 kN$ (smalles of the three modes) ⇔

All those results are shown in SCIA Engineer:

For individual bolt-row :

row	leff,1	leff,2	Lb*	Prying forces	FT,1,Rd	FT,2,Rd	FT,3,Rd	Ft,fc,Rd,i
1	145.10	145.10	107.26	1	182.53	138.51	180.86	138.51
2	145.10	145.10	107.26	1	182.53	138.51	180.86	138.51
3	145.10	145.10	107.26	1	182.53	138.51	180.86	138.51

The value for Lb was given already in the data of the bolts itself:

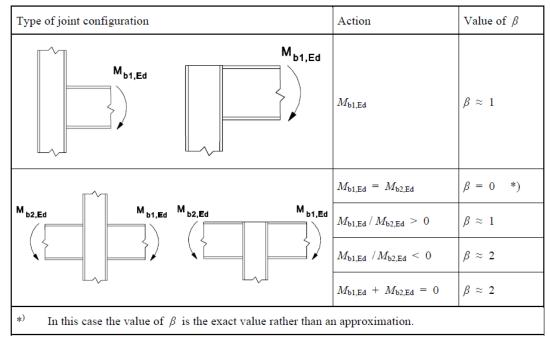
Ft,Rd data		
fub	800.00	N/mm^2
As	157.00	mm^2
k2	0.90	-
Ft,Rd	90.43	kN
Lb	38.80	mm

4.5.3.3. Column web in tension for the individual bolt rows

The design resistance of an unstiffened column web subject to transverse tension should be determined from:

 $F_{T,wc,Rd} = \frac{\omega b_{eff,t,wc} t_{wc} f_{y,wc}}{\gamma_{M0}} \quad (\text{see also EN 1993-1-8}: 2005; \text{ formula (6.15)} - \text{Ref.[1]})$

With: $b_{eff,t,wc} = l_{eff} = 145,10$


And ω , to allow for the possible effects of shear in the column web panel, should be determined from Table 6.3 (EN 1993-1-8):

Transformation parameter β		Reduction factor ω			
$0 \leq \beta \leq$	0,5	ω	=	1	
$0,5 < \beta <$	1	ω	=	$\omega_1 + 2(1-\beta)(1-\omega_1)$	
$\beta = 1$		ω	=	ω_1	
$1 < \beta <$	2	ω	=	$\omega_1 + (\beta - 1)(\omega_2 - \omega_1)$	
$\beta = 2$		ω	=	ω_2	
$\omega_1 = \frac{1}{\sqrt{1+1.3(b_{eff,c,wc} t_{wc})}}$	ω ₂ =	$\sqrt{1+1}$	$\frac{1}{5.2(b_{eff,c,wc} t_{wc} / A_{vc})^2}$		
$A_{\rm vc}$ is the shear area of the	column, see 6.2.6.1;				
β is the transformation pa	arameter, see 5.3(7).				

Table 6.3: Reduction factor ω for interaction with shear

And:

Table 5.4: Approximate values for the transformation parameter β

In this example:

$$\beta = 1$$

$$\omega = \omega_{1}$$

$$\omega = \omega_{1} = \frac{1}{\sqrt{1 + 1,3(b_{eff,c,wc}t_{wc}/A_{vc})^{2}}}$$

$$A_{vc} = A - 2 \cdot b_{c} \cdot t_{fc} + (t_{wc} + 2r_{c}) \cdot t_{fc}$$

$$A_{vc} = 4300 - 2 \cdot 140 \cdot 12 + (7 + 2 \cdot 12) \cdot 12 = 1312 \ mm^{2}$$

$$\omega = \omega_{1} = \frac{1}{\sqrt{1 + 1.3(b_{eff,c,wc}t_{wc}/A_{vc})^{2}}} = \frac{1}{\sqrt{1 + 1.3(145,10\cdot7/1312)^{2}}} = 0,75$$

$$\Rightarrow F_{T,wc,Rd} = \frac{\omega b_{eff,t,wc}t_{wc}f_{y,wc}}{\gamma_{M_{0}}} = \frac{0,75 \cdot 145,10 \cdot 7 \cdot 235 \cdot 10^{-3}}{1}$$

$\Rightarrow F_{T,wc,Rd} = 179 \ kN$

In SCIA Engineer:

row	beff,t,wc	omega 1	omega 2	omega	Ft,wc,Rd,i
1	145.10	0.75	0.49	0.75	178.95
2	145.10	0.75	0.49	0.75	178.95
3	145.10	0.75	0.49	0.75	178.95

4.5.3.4. Ft,fc,Rd of bolt rows considered as part of a group

ROW 1

 $\begin{array}{l} L_{eff} \mbox{ circular begin bolt-row} = \pi m + p_{end} = 3,14 \ ^{*} \ 26,9 + 70 = 154,51 \\ L_{eff} \mbox{ non circular begin bolt-row} = 2m + 0,625e + 0,5p = 2^{*} 26,9 + 0,625 \ ^{*} \ 30 + 0,5 \ ^{*} \ 70 = 107,55 \end{array}$

ROW 2

 $\begin{array}{l} L_{eff} \mbox{ circular inner bolt-row} = 2p = 2 \ ^* \ (35.0 \ + \ 70.0) = 210 \\ L_{eff} \ non \ circular inner \ bolt-row = p = 35.0 \ + \ 70.0 = 105 \\ L_{eff} \ circular \ end \ bolt-row = \pi m \ + \ p_{end} = 3,14 \ ^* \ 26,9 \ + \ 70 = 154,51 \\ L_{eff} \ non \ circular \ end \ bolt-row = 2m \ + \ 0,625 \ e \ + \ 0,5p \ = 2^{*}26,9 \ + \ 0,625 \ ^* \ 30 \ + \ 0,5 \ ^* \ 70 \ = \ 107,55 \end{array}$

ROW 3

 $\begin{array}{l} L_{eff} \mbox{ circular end bolt-row} = \pi m + p_{end} = 3,14 * 26,9 + 140 = 224,51 \\ L_{eff} \mbox{ non circular end bolt-row} = 2m + 0,625 + 0,5p = 2*26,9 + 0,625 * 30 + 0,5 * 140 = 142,55 \end{array}$

Summary:

Row	l _{eff} circular inner bolt-row	l _{eff} non circular inner bolt-row	l _{eff} circular end bolt-row	l _{eff} non circular end bolt-row	l _{eff} circular begin bolt-row	l _{eff} non circular begin bolt-row
1	-	-	-	-	154,51	107,55
2	210.00	105.00	154.51	107,55	224,51	142,55
3	-	-	224,51	142,55	-	_

In SCIA Engineer:

row	leff,cp,g,inner	leff,nc,g,inner	leff,cp,g,end	leff,nc,g,end	leff,cp,g,start	leff,nc,g,start
1	-	-	-	-	154.51	107.55
2	210.00	105.00	154.51	107.55	-	-
3	-	-	224.51	142.55	-	-

 $\begin{array}{l} \text{Mode 1}: \sum l_{eff,1} = \sum l_{eff,nc} \text{ but } \sum l_{eff,1} \leq \sum l_{eff,cp} \\ \text{Mode 2}: \sum l_{eff,2} = \sum l_{eff,nc} \end{array}$

Row 1-1 : not considered, same as the individual bolt row.

Row 1-2:

$$\begin{split} &\sum l_{eff,cp} = 154.10 + 154.50 = 309.02 \\ &\sum l_{eff,nc} = 107.55 + 107.55 = 215.10 \\ &\text{Mode 1 = Mode 2: } l_{eff} = 215.10 \end{split}$$

$$M_{pl,1,Rd} = M_{pl,2,Rd} = 0.25 \sum l_{eff} t_f^2 f_y / \gamma_{M0} = \frac{0.25 \cdot 215.1 \cdot 12^2 \cdot 235 \cdot 10^{-3}}{1} = 1819.8 \ kNm$$

Row 1-3:

 $\begin{array}{l} \sum l_{eff,cp} = 154.51 + 210.00 + 224.51 = 589.02 \\ \sum l_{eff,nc} = 107.55 + 105.00 + 142.55 = 355.10 \\ \textbf{Mode 1} = \textbf{Mode 2}: \textbf{l}_{eff} = \textbf{355.10} \end{array}$

$$M_{pl,1,Rd} = M_{pl,2,Rd} = 0.25 \sum l_{eff} t_f^2 f_y / \gamma_{M0} = \frac{0.25 \cdot 355.1 \cdot 12^2 \cdot 235 \cdot 10^{-3}}{1} = 3004.1 \ kNm$$

Prying forces may develop if $L_b \leq L_b^*$ $L_b = 38,8mm$

Row 1-2: $L_b^* = \frac{8.8 \ m^3 \ A_s}{\sum l_{eff} t_f^3} \cdot n_b = \frac{8.8 \ (26,9)^3 \cdot 157}{215, 10 \cdot (12)^3} \cdot 2 = 145 \ mm$ (with n_b = number of bolt rows)

 $\Rightarrow L_b < L_b^*$

⇒ Prying forces may develop

Row 1-3: $L_b^* = \frac{8.8 \ m^3 A_s}{\Sigma l_{eff} t_f^3} \cdot n_b = \frac{8.8 \ (26,9)^3 \cdot 157}{355,10 \cdot (12)^3} \cdot 3 = 131 \ mm$ (with n_b = number of bolt rows)

 $\Rightarrow L_b < L_b^*$

⇒ Prying forces may develop

Mode 1:
$$F_{T,1,Rd} = \frac{4M_{pl,1,Rd}}{m} = \frac{4\cdot1819,8}{26,9} = 270,6 \ kN$$

Mode 2: $F_{T,2,Rd} = \frac{2M_{pl,2,Rd} + n\sum F_{t,Rd}}{m+n} = \frac{2\cdot1819,8+30\cdot4\cdot90,43}{26,9+30} = 254,7 \ kN$
Mode 3: $F_{T,3,Rd} = \sum F_{t,Rd} = 4\cdot90,43 = 361,7 \ kN$
 $F_{T,Rd} = 254,7 \ kN$

⇔

Row 1-3:

⇔

Mode 1:
$$F_{T,1,Rd} = \frac{4M_{pl,1,Rd}}{m} = \frac{4\cdot3004,1}{26,9} = 446,7 \ kN$$

Mode 2: $F_{T,2,Rd} = \frac{2M_{pl,2,Rd} + n \sum F_{t,Rd}}{m+n} = \frac{2\cdot3004,1+30\cdot6\cdot90,43}{26,9+30} = 391,7 \ kN$
Mode 3: $F_{T,3,Rd} = \sum F_{t,Rd} = 6 \cdot 90,43 = 542,6 \ kN$
 $F_{T,Rd} = 391,7 \ kN$

In SCIA Engineer:

For bolt group :

group	leff,1	leff,2	Lb*	Prying forces	FT,1,Rd	FT,2,Rd	FT,3,Rd	Ft,fc,Rd,g
1- 1	145.10	145.10	107.26	1	182.53	138.51	180.86	138.51
1- 2	215.10	215.10	144.71	1	270.59	254.68	361.73	254.68
1- 3	355.10	355.10	131.48	1	446.71	391.67	542.59	391.67

4.5.3.5. Column web in tension for bolt rows considered as part of a group

Row 1-2:

$$\omega = \omega_1 = \frac{1}{\sqrt{1 + 1.3(b_{eff,c,wc}t_{wc}/A_{vc})^2}} = \frac{1}{\sqrt{1 + 1.3(215,10\cdot7/1312)^2}} = 0,61$$

$$\Rightarrow F_{T,wc,Rd} = \frac{\omega b_{eff,t,wc}t_{wc}f_{y,wc}}{\gamma_{M_0}} = \frac{0.61\cdot215,10\cdot7\cdot235\cdot10^{-3}}{1}$$

 $\Rightarrow F_{T,wc,Rd} = 215 \, kN$

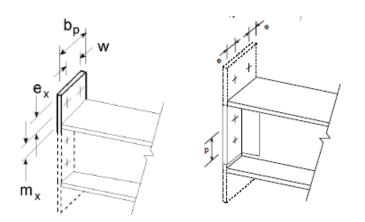
Row 1-3:

$$\omega = \omega_1 = \frac{1}{\sqrt{1 + 1.3(b_{eff,c,wc}t_{wc}/A_{vc})^2}} = \frac{1}{\sqrt{1 + 1.3(355,10.7/1312)^2}} = 0,42$$

$$\Rightarrow F_{T,wc,Rd} = \frac{\omega b_{eff,t,wc} t_{wc} f_{y,wc}}{\gamma_{M0}} = \frac{0.42 \cdot 355, 10 \cdot 7 \cdot 235 \cdot 10^{-3}}{1}$$

$$\Rightarrow F_{T,wc,Rd} = 245 \, kN$$

In SCIA Engineer:

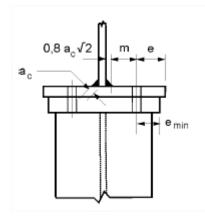

	group	beff,t,wc	omega 1	omega 2	omega	Ft,wc,Rd,g
Γ	1-1	145.10	0.75	0.49	0.75	178.95
	1-2	215.10	0.61	0.36	0.61	214.86
	1-3	355.10	0.42	0.23	0.42	245.40

4.5.4. End plate

We can repeat the whole principle of the column flange calculation on the end plate. In this case we are using Table 6.6 of the EN 1993-1-8 (Ref.[1]).

4.5.4.1. General parameters

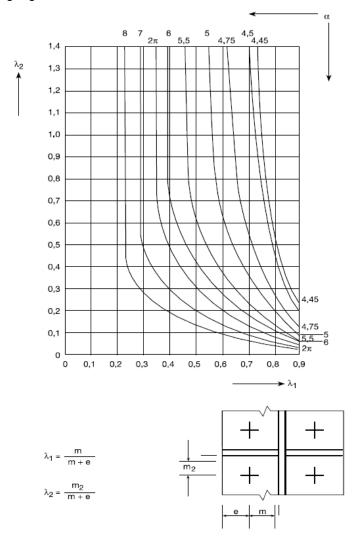
First some definitions of the parameters, following EN 1993-1-8 (Ref[1]), Figure 6.8 a:


Some picture from Figure 6.10 of EN 1993-1-8.

For the end-plate extension, use e_x and m_x in place of e and m when determining the design resistance of the equivalent T-stub flange.

<u>Row 1</u>

 $\begin{array}{l} e_x = h_{endplate} \text{ - } h_{row1} \ - \ distance_{Endplate_under-IPE220_under} \\ e_x = 305 - 250 - 15 = 40 \end{array}$


fyd	Weld size
≤ 240 N/mm²	$a_f \ge 0.5 t_{fb}$
	a _w ≥ 0.5 t _{wb}
> 240 N/mm²	$a_f \ge 0.7 t_{fb}$
	a _w ≥ 0.7 t _{wb}

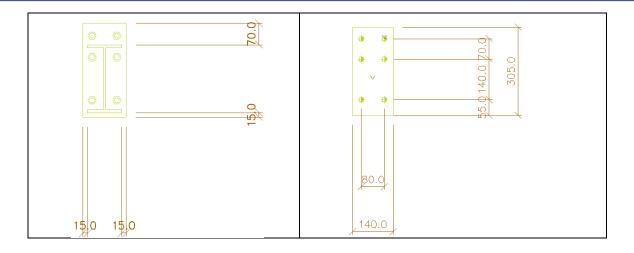
 $n = e_{min} = 40mm$ $\leq 1,25 \cdot m = 1,25 \cdot 24,34 = 30,42mm$ n = 30,42mmw = 80 mm

Row 2 and Row 3

Using Figure 6.11 of the EN 1993-1-8

e = 30 mm

fyd	Weld size
≤ 240 N/mm²	a _f ≥ 0.5 t _{fb} a _w ≥ 0.5 t _{wb}
> 240 N/mm²	$a_f \ge 0.7 t_{fb}$ $a_w \ge 0.7 t_{wb}$


 $a_w = 0.5 \cdot t_{wb} = 0.5 \cdot 5.9 = 3.0$

$$m = \frac{b_{endplate} - t_{wc}}{2} - e - 0.8 \cdot a \cdot \sqrt{2}$$
 (see also EN1993-1-8 (Figure 6.10))

$$m = \frac{140-5,9}{2} - 30 - 0,8 \cdot 3 \cdot \sqrt{2} = 33,66 \text{ mm}$$

 $\begin{array}{l} n = e_{min} \; = 30 \mathrm{mm} \\ \leq 1,25 \cdot m = 1,25 \cdot 33,66 = 42,01 \mathrm{mm} \end{array}$

$$n = 30 mm$$

$$\begin{split} m_{2,row2} &= e_x - t_f - 0.8 \cdot a_f \cdot \sqrt{2} \\ m_{2,row2} &= (35 + \frac{9.2}{2}) - 9.2 - 0.8 \cdot 5 \cdot \sqrt{2} = 24,74 \text{ mm} \\ m_{2,row3} &= h_{row3} - t_f - 0.8 \cdot a_f \cdot \sqrt{2} \\ m_{2,row3} &= 35 + \frac{9.2}{2}) - 9.2 - 0.8 \cdot 5 \cdot \sqrt{2} = 24,74 \text{ mm} \\ \lambda_1 &= \frac{m}{m+e} = \frac{33,66}{33,66+30} = 0,53 \\ \lambda_{2,row2} &= \lambda_{2,row3} = \frac{m_{2,row2}}{m+e} = \frac{24,74}{33,66+30} = 0,39 \end{split}$$

⇒ Alpha = 5,9 (Figure 6.6; EN 1993-1-8)

Row	p (p ₁ + p ₂)	е	m	n	Lambda_1	Lamba_2	alpha
1	0.0 + 35.0	40 (= e _x)	24,34	30,42	-	-	-
2	35.0 + 70.0	30	33,66	30	0,53	0,39	5,99
3	70.0 + 0.0	30	33,66	30	0,53	0,39	5,99

In SCIA Engineer:

row	p (p1+p2)	alpha	e	ex	m	mx	n
1	0.0+35.0	-	30.00	40.00	-	24.34	30.43
2	35.0+70.0	5.99	30.00	-	33.66	-	30.00
3	70.0+ 0.0	-	30.00	-	33.66	-	30.00

To calculate the end plate we will use Table 6.6 of the EN 1993-1-8 - Ref.[1].

	Bolt-row considered		Bolt-row considered	d as
Bolt-row	individually		part of a group of bolt-rows	
location	Circular patterns	Non-circular patterns	Circular patterns	Non-circular
	l _{eff,cp}	l _{eff,nc}	ℓ _{eff,cp}	patterns ℓ _{eff,nc}
Bolt-row outside tension flange of beam	Smallest of: $2\pi m_x$ $\pi m_x + w$ $\pi m_x + 2e$	Smallest of: $4m_x + 1,25e_x$ $e+2m_x+0,625e_x$ $0,5b_p$ $0,5w+2m_x+0,625e_x$	_	_
First bolt-row below tension flange of beam	2πm	αm	$\pi m + p$	$0.5p + \alpha m$ - $(2m + 0.625e)$
Other inner bolt-row	2πm	4m + 1,25 e	2 <i>p</i>	р
Other end bolt-row	2πm	4m + 1,25 e	$\pi m + p$	2m+0,625e+0,5p
Mode 1:	$\ell_{\text{eff},1} = \ell_{\text{eff},nc} \text{ but } \ell_{\text{eff},1} \leq \ell_{\text{eff},cp}$		$\sum \ell_{\text{eff},1} = \sum \ell_{\text{eff,nc}}$ but $\sum \ell_{\text{eff},1} \leq \sum \ell_{\text{eff,cp}}$	
Mode 2:	$\ell_{eff,2} = \ell_{eff,nc}$		$\sum \ell_{eff,2} = \sum \ell_{eff,nc}$	

Table 6.6: Effective lengths for an end-plat	Table 6.6:	Effective	lengths for	or an	end-plat
--	------------	-----------	-------------	-------	----------

When looking at Table 6.6 of the EN 1993-1-8, we can make the following bolt-row locations:

Row 1: Bolt-row outside tension flange of beam Row 2: First bolt-row below tension flange of beam

Row 3: Other end bolt-row

And the same bolt-row location will be shown in SCIA Engineer:

```
2.1.4.2. Endplate
According to EN 1993-1-8 Article 6.2.6.5, 6.2.6.8
(effective lengths in mm, resistance in kN)
```

row	Bolt-row location					
1	Bolt-row outside of beam					
2	First bolt-row below tension flange of beam					
3	Otherend bolt-row					

4.5.4.2. Bolt rows considered individually

<u>Row 1:</u>

$$\begin{split} & l_{eff} \text{ circular patterns} = \text{smallest of:} \\ & 2\pi m_x = 2^*3, 14^*24, 34 = \textbf{152,93} \\ & \pi m_x + w = 3, 14^*24, 34 + 80 = 156, 47 \\ & \pi m_x + 2e = 3, 14^*24, 34 + 2^*40 = 156, 47 \end{split}$$

leff non circular patterns = smallest of:

```
4m_x + 1,25 e_x = 4*24,34 + 1,25 * 40 = 147,36
e + 2m<sub>x</sub> + 0,625e<sub>x</sub> = 30 + 2*24,34 + 0,625*40 = 103,68
0,5 b<sub>p</sub> = 0,5 * 140 = 70
0,5 w + 2m<sub>x</sub> + 0,625 e<sub>x</sub> = 0,5 *80 + 2*24,34 + 0,625*40 = 113,68
```

<u>Row 2:</u>

 l_{eff} circular patterns = $2\pi m = 2^*3.14^*33,66 = 211,49$ l_{eff} non circular patterns: $\alpha m = 5,99^*33,66 = 201,62$

Row 3:

 l_{eff} circular patterns = $2\pi m = 2^*3.14^*33,66 = 211,49$ l_{eff} non circular patterns: 4m + 1,25e = 4 * 33,66 + 1.25 * 30 = 172,14mm

Row	l _{eff} circular patterns	l _{eff} non-circular patterns
1	152,93	70,00
2	211,49	201,62
3	211,49	172,14

In SCIA Engineer:

row	leff,cp,i	leff,nc,i	
1	152.95	70.00	
2	211.47	201.57	
3	211.47	172.12	

And now from the bottom of Table 6.6:

Mode 1:	$\boldsymbol{\ell_{eff,1}} = \boldsymbol{\ell_{eff,nc}} \ but \ \boldsymbol{\ell_{eff,1}} \leq \boldsymbol{\ell_{eff,cp}}$
Mode 2:	$\boldsymbol{\ell_{eff,2}} = \boldsymbol{\ell_{eff,nc}}$

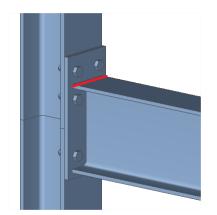
So this results in:

Mode 1 : $I_{eff,1} = I_{eff,nc}$ but $I_{eff,1} \leq I_{eff,cp}$	=> I _{eff,1} = 145.10
Mode 2 : I _{eff,2} = I _{eff,nc}	=> I _{eff,2} = 145.10

Now the same check for prying forces can be executed and the same formulas for the different mode.

Afterwards also the beam web in tension can be calculated again using the same formulas.

The manual calculation of this can be found in our calculation Steel design example of a joint with extended end plate".


This will result in the following tables for the individual bolt-rows:

row	leff,1	leff,2	Lb*	Prying forces	FT,1,Rd	FT,2,Rd	FT,3,Rd	Ft,ep,Rd,i
1	70.00	70.00	164.77	1	97.31	122.10	180.86	97.31
2	201.57	201.57	151.22	1	202.67	138.82	180.86	138.82
3	172.12	172.12	177.08	1	173.07	130.99	180.86	130.99

row	beff,t,wb	Ft,wb,Rd,i
1	-	-
2	201.57	279.47
3	172.12	238.65

4.5.4.3. Bolt rows considered as part of a group

Again for the bolt rows considered as part of a group, we can follow the same principle. For the end plate, only the group 2-3 is a possible group. Between row 1 and row 2 we have the flange of the beam, which will be seen as a stiffener.

So Row 1 and Row 2 are separate.

The only group is thus Row 2-3 and leff is calculated again using Table 6.6 of the EN 1993-1-8 (Ref.[1]).

Row 2:

L_{eff} circular begin bolt-row = π m + p = 3,14 * 33,66 + 140 = 245,73

 $L_{\text{eff}} \text{ non circular begin bolt-row} = 0.5p + \alpha m - (2m + 0.625e) = 0.5^{*}140 + 5.99^{*}33.66 - (2^{*}33.66 + 0.625^{*}30) = 185.55$

Row 3:

 L_{eff} circular end bolt-row = $\pi m + p = 3,14 * 33,66 + 140 = 245,73$ L_{eff} non circular end bolt-row = 2m + 0,625e + 0,5p = 2*33,66 + 0,625*30 + 0,5*140 = 156,07

Summary of values:

Row	l _{eff} circular inner bolt-row	l _{eff} non circular inner bolt-row	l _{eff} circular end bolt-row	l _{eff} non circular end bolt-row	leff circular begin bolt-row	leff non circular begin bolt-row
1	-	-	-	-	-	-
2	-	-	-	-	245,73	185,51
3	-	_	245,73	175,51	_	_

In SCIA Engineer:

row	leff,cp,q,inner	leff,nc,q,inner	leff,cp,q,end	leff,nc,q,end	leff,cp,q,start	leff,nc,q,start
1	152.95	70.00	-	-	-	-
2	-	-	-	-	245.73	185.51
3	-	-	245.73	156.06	-	-

 $\begin{array}{l} \text{Mode 1}: \sum l_{eff,1} = \sum l_{eff,nc} \text{ but } \sum l_{eff,1} \leq \sum l_{eff,cp} \\ \text{Mode 2}: \sum l_{eff,2} = \sum l_{eff,nc} \end{array}$

Row 2-3:

 $\sum_{l_{eff,cp}} l_{eff,cp} = 245,73 + 245,73 = 491,46 \\ \sum_{l_{eff,nc}} l_{eff,nc} = 185,51 + 185,51 = 341,57$

Mode 1 = Mode 2 : I_{eff} = 341,57

In SCIA Engineer:

aroup	leff.co.a	leff.nc.a
1-1	152.95	70.00
2-2	211.47	201.57
2-3	491.47	341.57

$$M_{pl,1,Rd} = M_{pl,2,Rd} = 0.25 \sum l_{eff} t_f^2 f_y / \gamma_{M0} = \frac{0.25 \cdot 341.57 \cdot 12^2 \cdot 235 \cdot 10^{-3}}{1} = 2889.7 \ kNm$$

Prying forces may develop if $L_b \le L_b^*$ $L_b = 38,8mm$

Row 2-3: $L_b^* = \frac{8.8 \ m^3 A_s}{\sum l_{eff} t_f^3} \cdot n_b = \frac{8.8 \ (33,66)^3 \cdot 157}{341,57 \cdot (12)^3} \cdot 2 = 179 \ mm$ (with n_b = number of bolt rows)

 $\Rightarrow \quad L_b < L_b^*$

⇒ Prying forces may develop

Row 2-3:

Mode 1: $F_{T,1,Rd} = \frac{4M_{pl,1,Rd}}{m} = \frac{4\cdot 2889,7}{33,66} = 343 \ kN$ Mode 2: $F_{T,2,Rd} = \frac{2M_{pl,2,Rd} + n\sum F_{t,Rd}}{m+n} = \frac{2\cdot 2889,7 + 30\cdot 4 \cdot 90,43}{33,66 + 30} = 261,2 \ kN$ Mode 3: $F_{T,3,Rd} = \sum F_{t,Rd} = 4 \cdot 90,43 = 361,7 \ kN$

 $\Rightarrow F_{T,Rd} = 261, 2 \ kN$

In SCIA Engineer:

For bolt group :

aroup	leff.1	leff.2	l h*	Prving forces	FT.1.Rd	FT.2.Rd	FT.3.Rd	Ft.ep.Rd.g
1- 1	70.00	70.00	164.77		97.31	122.10	180.86	97.31
2-2	201.57	201.57	151.22	1	202.67	138.82	180.86	138.82
2-3	341.57	341.57	178.47	1	343.44	261.27	361.73	261.27

4.5.4.4. Beam web in tension for bolt rows considered as part of a group

Row 2-3:

 $\Rightarrow F_{T,wb,Rd} = \frac{b_{eff,t,wb}t_{wb}f_{y,wb}}{\gamma_{M0}} = 341,57 \cdot 5,9 \cdot 235 \cdot 10^{-3}/1$ $\Rightarrow F_{T,wc,Rd} = 473,6 \, kN$

In SCIA Engineer:

aroup	beff.t.wb	Ft.wb.Rd.a
1-1	-	-
2-2	201.57	279.47
2-3	341.57	473.58

4.5.5. Potential tension resistance for each bolt row

In SCIA Engineer all results for the column flange and end plate are summarized in one table:

.2.1. Pot	e distribution in ential tension to EN 1993-1-8		6),(8)						
row	Ft,fc,Rd,i	Ft, fc, Rd, q	Ft,wc,Rd,i	Ft,wc,Rd,q	Ft,ep,Rd,i	Ft,ep,Rd,q	Ft,wb,Rd,i	Ft,wb,Rd,q	Ft,r,Rd
1	138.51	138.51	178.95	178.95	97.31	97.31	-	-	97.31
2	138.51	157.37	178.95	117.55	138.82	138.82	279.47	279.47	117.55
3	138.51	176.82	178.95	30.54	130.99	143.72	238.65	356.04	30.54

The minimum value of all those calculated value is the limited value for the tension resistance of one bolt row:

Row 1: 97,31 kN (End plate failure) Row 2: 117,55 kN (Column flange failure) Row 3: 30,54 kN (Column flange failure)

This will be used in the calculation of MRd in the next chapter.

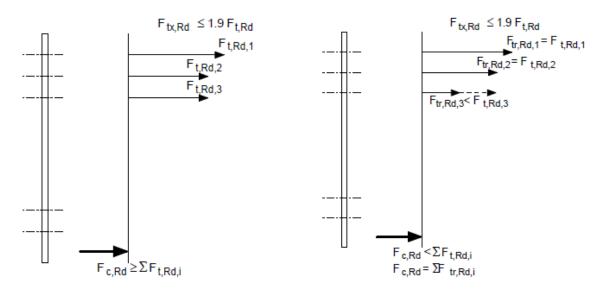
4.6. Calculation of MRd

The design moment resistance $M_{j,Rd}$ of a beam-to-column joint with a bolted end-plate connection may be determined from:

 $M_{i,Rd} = \sum_{r} h_r F_{tr,Rd}$ (EN 1993-1-8; §6.2.7.2 – Ref.[1])

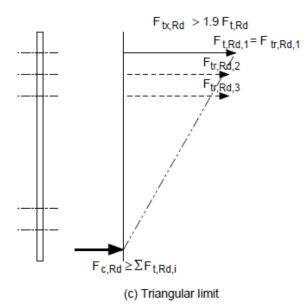
Ft,min for each boltrow:

Row 1: 97,31 kN (End plate failure) Row 2: 117,55 kN (Column flange failure) Row 3: 30,54 kN (Column flange failure)


Following §6.2.7.2 (6) and (8)

The lowest value for the column web in tension, the column flange in bending, the end-plate in bending and the beam web in tension has to be checked. All these values are higher than column web in shear, which also have to be checked following §6.2.7.2 (7).

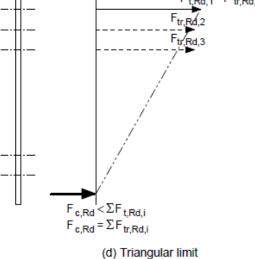
The column web in shear has the lowest resistance: 160,2kN


According to EN 1993-1-8 Article 6.2.7.2 (7)		
	0.21 kN	
Column web in compression (Fc,wc,Rd) 19	0.56 kN	
Beam flange and web in compression (Fc,fb,Rd) 312	7.72 kN	

This limit and the triangular limit (see further) are shown on the next page.

(a) Plastic distribution

 Because F_{c,Rd} and V_{wp,Rd} ≥ F_{t,Rd,i} therefore the effective tension resistance (F_{tr,Rd}) is equal to the potential design resistance (F_{t,Rd,i})


compression centre: $F_{tx,Rd} > 1.9 F_{t,Rd}$ $F_{t,Rd,1} = F_{tr,Rd,1}$ $F_{tr,Rd,2}$

(b) Modified plastic distribution

Because F_{c,Rd} and/or V_{wp,Rd} < F_{t,Rd,i} therefore the

effective tension resistances (Ftr,Rd) have to be

reduced starting from the closest bolt to the

Because $F_{tx,Rd} > 1,9 F_{t,Rd}$ the effective tension resistance has to be reduced:

$$F_{\rm tr,Rd} = F_{\rm tx,Rd} \frac{h_{\rm r}}{h_{\rm x}}$$

 Because F_{tx,Rd} > 1,9 F_{t,Rd} the effective tension resistance has to be reduced:

$$F_{\text{tr,Rd}} = F_{\text{tx,Rd}} \frac{h_{\text{r}}}{h_{\text{x}}}$$

 Because F_{c,Rd} and/or V_{wp,Rd} < F_{t,Rd,i} the effective tension resistances (F_{tr,Rd}) have to be reduced, starting from the closest bolt to the compression centre

For the first boltrow $F_{t,Rd,1} = 97,31$ kN.

The maximum value for bolt row 2 is: $F_{t,Rd,2} = 160,2 - F_{t,Rd,2} = 62,9kN$.

And row 3 will not take any resistance.

This principle is shown on the next page.

- ⇒ Row 1: 97,31 kN (End plate failure)
- ⇒ Row 2: 62,9 kN (Reduced by column web in shear)
- ⇒ Row 3: 0 kN (Reduced by column web in shear)

This is also shown in SCIA Engineer:

row	Ft.r.Rd	Decrease	Ft.r.Rd
1	97.31	0.00	97.31
2	117.55	54.65	62.90
3	30.54	30.54	0.00

Following EN 1993-1-8 §6.2.7.2 (9) (Ref.[1]) the value 1,9 Ft,Rd has to be checked also:

1,9 F_{t,Rd} = 1,9 * 90,43 kN = 171,82 kN

The formula $F_{tx,Rd} \leq 1,9F_{t,Rd}$ is fulfilled for all the rows.

So also no reduction in SCIA Engineer for the triangular limit:

2.2.3. Triangular limit

According to EN 1993-1-8 Article 6.2.7.2 (9) Limit: 1.9*Ft,Rd = 171.82 kN

row	Ft.r.Rd	> Limit	Decrease	Ft.r.Rd
1	97.31	no	-	97.31
2	62.90	no	-	62.90
3	0.00	no	-	0.00

So M_{j,Rd} can be calculated with the following values:

 $h_{row 1} = 250 - 9,2/2 = 245.4 \text{ mm}$ $h_{row 2} = 180 - 9,2/2 = 175.4 \text{ mm}$ $h_{row 3} = 40 - 9,2/2 = 35,4 \text{ mm}$

Those values are calculated as the distance from the bolt to the middle of the bottom flange. In SCIA Engineer the values are given as the distance to the bottom of the beam, so we have to subtract the half of the thickness of the flange (=9,2mm/2) of this distance.

Name	
Selected bolt assembly	M16 - 8.8 💌
Length [mm]	50,00
Bolt pattern	2 bolts/row
Reference	Bottom of the beam
Internal bolts distance [mm]	80,00
External bolts distance [mm]	80,00
1.Row	
2.Row	
3.Row	
4.Row	
1.Location [mm]	250,00
2.Location [mm]	180,00
3.Location [mm]	94,00
4.Location [mm]	40,00
Actions	
Update location	>>>
	OK Cancel

Row	h [mm]	Ft [kN]
1	245,4	97,3
2	175,4	62,9
3	35,4	0

 $M_{j, Rd} = 245,4 * 97,3 + 175,4 * 62,9 = 34910 \text{ kNmm} = 34,91 \text{ kNm}$

In SCIA Engineer:

	termination	of Mj,Rd 3-1-8 Article 6	272(1)
Accord			
row	hr[mm]	Ft,r,Rd[kN]	
1	245.40	97.31	1
2	175.40	62.90	
3	35.40	0.00	
	•		-
Mj,Rd =	= 34.91 k	Nm	

4.7. Calculation of NRd

The value for $N_{j,Rd}$ is calculated as follows: If $N_{j,Ed}$ is a tensile force, the $N_{j,Rd}$ is determined by critical value for the following components:

- For bolted connection, as a combination for all bolt rows:

- column web in transverse tension
- column flange in bending
- end plate in bending
- beam web in tension
- bolts in tension

- For welded connection:

- Column web in transverse tension, where the value for t_{tb} in formulas (6.10) and (6.11) is replaced by the beam height.
- Column flange in bending, by considering the sum of formula (6.20) at the top and bottom flange of the beam.
- If N_{i,Ed} is a compressive force, the N_{i,Rd} is determined by the following components:
 - \circ Column web in transverse compression, where the value for t_b in formulas (6.16) is replaced by the beam height.
 - Column flange in bending, by considering the sum of formula (6.20) at the top and bottom flange of the beam.

In all cases, $N_{j,Rd} \le N_{pl,Rd}$.

In our example the normal force resistance N_{Rd} will be calculated as the minimum of the following 5 values:

Column web in tension:

This is calculated for the bolt group 1-3 for the column flange:

group	befft,wc	omega 1	omega 2	omeq a	Ft,wc,Rd,q
1-1	145.10	0.75	0.49	0.75	178.95
1-2	215.10	0.61	0.36	0.61	214.86
1-3	355.10	0.42	0.23	0.42	245.40

⇒ 245, 40 kN

Beam Web in tension:

This is calculated for the bolt group 2-3 for the endplate:

aroup	beff.t.wb	Ft.wb.Rd.a
1-1	-	-
2-2	201.57	279.47
2-3	341.57	473.58

⇒ 473,58 kN

Endplate in bending:

Here the most limiting value of the endplate (individual rows and groups) will be calculated.

In this case the limiting value is

o Bolt row 1

• Group of bolt row 2+3

group	leff,1	leff,2	Lb*	Prying	FT, 1, R d	FT, 2, R d	FT, 3, R d	Ft,ep,Rd,g
				forces				
1-1	70.00	70.00	164.77	1	97.31	122.10	180.86	97.31
2-2	201.57	201.57	151.22	1	202.67	138.82	180.86	138.82
2-3	341.57	341.57	178.47	1	343.44	261.27	361.73	261.27

And this results in: 97,31 kN + 261,27 kN = 358,58 kN

Column Flange in tension:

This is calculated for the bolt group 1-3 for the Column flange:

For bolt group :

group	leff,1	leff,2	Lb*	Prying forces	FT,1,Rd	FT,2,Rd	FT, 3, Rd	Ft, fc, Rd, q
1-1	145.10	145.10	107.26	1	182.53	138.51	180.86	138.51
1-2	215.10	215.10	144.71	1	270.59	254.68	361.73	254.68
1-3	355.10	355.10	131.48	1	446.71	391.67	542.59	391.67

⇒ 391,68 kN

Bolts in Tension:

- 6 bolts and $F_{T,Rd}$ for one bolt = 90,43 kN
- ⇒ 6 x 90,43 kN = **542,58 kN**

$\mathbf{N}_{j,Rd}$

- ⇒ Minimum of all previous values
- ⇒ 245,40 kN

In SCIA Engineer:

2.5. Determination of Nj,Rd According to EN 1993-1-8 Article 6.2.7.1 (3)

data		
Column Web in tension (Ft,wc,Rd)	245.40	kN
Beam Web in tension (Ft,wb,Rd)	473.58	kN
Endplate in bending (Ft,ep,Rd)	358.58	kN
Column Flange in tension (Ft,fc,Rd)	391.67	kN
Bolts in Tension (Ft,Rd)	542.59	kN

Nj,Rd = 245.40 kN

4.8. Calculation of VRd

Table 3.4 (En 1993-1-8):

$$F_{\nu,Rd} = \frac{\alpha_{\nu} f_{ub} A}{\gamma_{M2}}$$

For classes 4.6, 5.6 and 8.8: $\alpha_v = 0.6$

 $F_{ub} = 800MPa$

A is the tensile stress area of the bolt A_s

$$F_{\nu,Rd} = \frac{\alpha_{\nu} f_{ub} A_s}{\gamma_{M2}} = \frac{0.6 \cdot 800 \cdot 157 \cdot 10^{-3}}{1.25}$$

⇒ F_{v,Rd} = 60,29 kN

Following the NOTE of §6.2.2 (2) (EN 1993-1-8):

As a simplification, bolts required to resist in tension may be assumed to provide their full design resistance in tension when it can be shown that the design shear force does not exceed the sum of

- a) The total design resistance of those bolts that are required to resist tension
- b) (0,4 / 1,4) times the total design shear resistance of those bolts that are also required to resist tension

4 bolts (row 1 and 2) are required to resist tension, 2 bolts (of row 3) are not required to resist tension. The value 0,4/1,4 will be simplified in SCIA Engineer by the value 0,28:

 \Rightarrow V_{Rd} = (4 * 0,28 + 2) * 60,29kN = 188,10 kN

In SCIA Engineer:

3. Design shear resistance VRd

VRd data		
VRd	188.10	kN
Fv, Rd	60.29	kN
e1,ep	40.00	mm
p1	70.00	mm
k1 plate	2.50	
k1 beam	2.50	
Alfa_b plate	0.74	
Alfa_b column	0.74	
Alfa_d plate	0.74	
Alfa_d column	0.74	
Fb,ep,Rd	102.40	kN
Fb,cf,Rd	102.40	kN
VRd beam	215.47	kN

Remark

If the unity check for the Moment and Moment + Normal force is okay, but the unity check for the shear force is bigger than one, it could be interesting to use the last bolt row only for the shear force resistance.

You can activate the option "Use last bolt only for shear capacity".

- Standard EN	News	Standard EN	
⊡- Standard EN ⊟- Connection	Name	Standard Elv	
General data			
- Frame bolted/welded	General data		
Base plate	Frame bolted/welded		
Expert system	Transformation of efforts	In axis	
Bolted diagonal Thickness	Weld size of haunch	Length	
	Allowable relative error for mom		
	Omitting weld in beff [FcRd]	no	
	Include stress in column flange		
	Capacity of beam flange	Prof+Haunch	
	Use alternative method for Ft,R		
	Always adapt stiffeners	no	
	Always adapt weldsizes	no	
	Apply stiffness classification ch		
	Use internal forces for weld size		
	Use stiffeners in column web pa		
	Use last bolt only for shear cap	acity 🕼 yes	
	Base plate		
	Expert system		
	Bolted diagonal		
	Thickness		
	Load default non-NA par	ameters Load default NA parameters	DK Cancel

This last bolt-row has a small lever arm for the moment resistance, so the influence on the moment check will be small.

4.9. Unity checks

4.9.1. Influence of the normal force

If the axial force N_{Ed} in the connected beam exceeds 5% of the design resistance, $N_{\text{pl},\text{Rd}}$, the following unity check is added :

$$\frac{M_{_{j,\text{Ed}}}}{M_{_{j,\text{Rd}}}} \! + \! \frac{N_{_{j,\text{Ed}}}}{N_{_{j,\text{Rd}}}} \! \leq \! 1.0$$

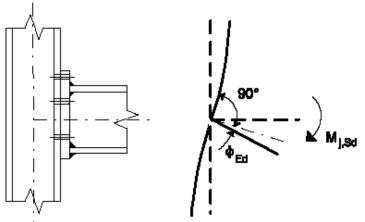
 $M_{j,Rd}$ is the design moment resistance of the joint, assuming no axial force $N_{j,Rd}$ is the axial design resistance of the joint, assuming no applied moment $N_{j,Ed}$ is the actual normal force in the connection $M_{j,Ed}$ is the actual bending moment in connection

4.9.2. General unity checks

Assume following internal forces in this connection:

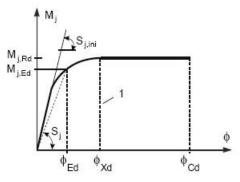
Check M:	$M/M_{Rd} = 10/34,9 = 0,29 < 1$	=> ok!
Check V:	$V/V_{Rd} = 10/189,48 = 0,05 < 1$	=> ok!
Check MN:	$M/M_{Rd} + N/N_{Rd} = 10/34,9 + 0 = 0,29 < 1$	=> ok!

In SCIA Engineer:

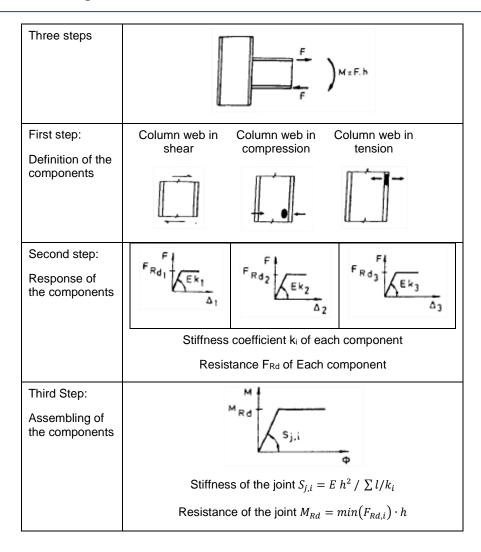

5. Unity checks

Unity checks	
MEd/MjRd	0.29
VEd/VRd	0.05
Unity check M/MRd + N/NRd	0.29

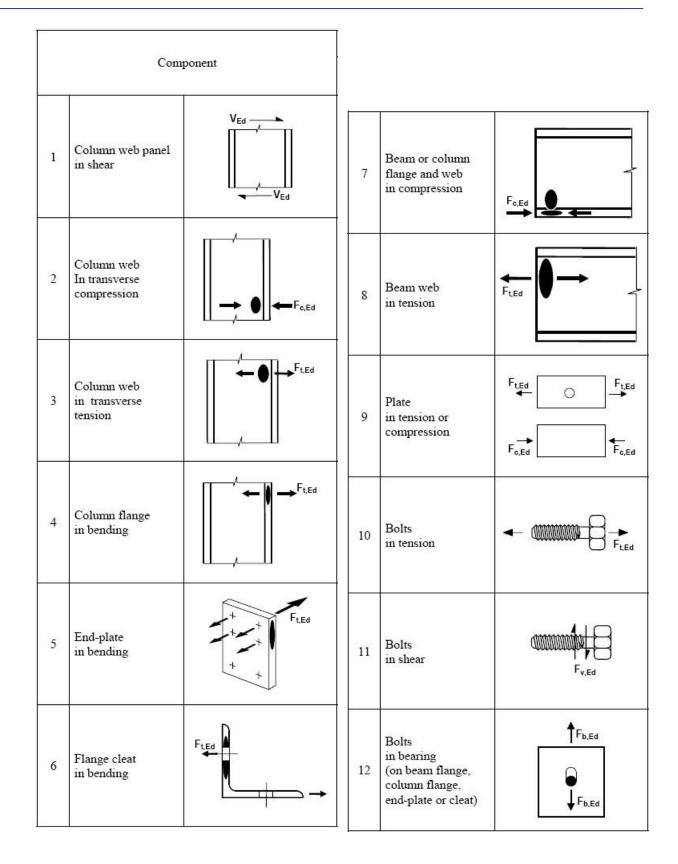
5. Stiffness of the connection


5.1. The Moment-Rotation characteristic

A joint is defined by the moment rotation characteristic that describes the relationship between the bending moment $M_{j,Sd}$ applied to a joint by the connected beam and the corresponding rotation ϕ_{Ed} between the connected members.


This moment-rotation characteristic defines three main properties:

- the moment resistance M_{j,Rd}
- the rotational stiffness S_j
- the rotation capacity ϕ_{Cd}



The general analytical procedure which is used for determining the resistance and stiffness properties of a joint, is the so-called component method. The component method considers any joint as a set of individual basic components. Each of these basic components possesses its own strength and stiffness. The application of the component method requires the following steps:

- 1. identification of the active components in the joint being considered
- 2. evaluation of the stiffness and/or resistance characteristics for each individual basic component
- 3. assembly of all the constituent components and evaluation of the stiffness and/or resistance characteristics of the whole joint

In the following tables all different components are shown.

13	Concrete in compression including grout			
14	Base plate in bending under compression		The second	
15	Base plate in bending under tension		mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	
16	Anchor bolts in tension		KO	0
17	Anchor bolts in shear	Tension	a	bolts in tension
18	Anchor bolts in bearing		b c	end plate bending column flange bending beam web tension
			d	
19	Welds		e [f] [g]	column web tension flange to end plate weld web to end plate weld
19	Welds	Horizontal shear	e [f]	column web tension flange to end plate weld
19	Welds Haunched beam		e [f] [g]	column web tension flange to end plate weld web to end plate weld
		shear	e [f] [g] h j [k]	column web tension flange to end plate weld web to end plate weld column web panel shear beam flange compression beam flange weld
		shear	e [f] [g] h j	column web tension flange to end plate weld web to end plate weld column web panel shear beam flange compression

5.2. Calculation of the stiffness

5.2.1. General formulas

In EN 1993-1-8 Table 6.11 (Ref. [1]) the stiffness coefficients for basic joint components are given:

Coefficient	Basic component	Formula	
k ₁	column web panel in	Unstiffened:	Stiffened:
	shear	$k_1 = \frac{0,38 \cdot A_{VC}}{\beta z}$	$k_1 = \infty$

q

bolt bearing

k ₂	column web in compression	Unstiffened: $k_{2} = \frac{0.7 \cdot b_{eff,c,wc} t_{wc}}{d_{c}}$	Stiffened: $k_2 = \infty$
k3	Column web in tension	Unstiffened: $k_{3} = \frac{0.7 \cdot b_{eff,t,wc} t_{wc}}{d_{c}}$	Stiffened: $k_3 = \infty$
k 4	column flange in bending (for a single bolt-row in tension)	$k_4 = \frac{0.9 \cdot l_{eff} t_{fc}^3}{m^3}$	
k₅	End-plate in bending (for a single bolt-row in tension)	$k_5 = \frac{0.9 \cdot l_{eff} t_p^3}{m^3}$	
k ₆	Flange cleat in bending	$k_6 = \frac{0.9 \cdot l_{eff} t_a^3}{m^3}$	
k ₆	Flange cleat in bending	$k_6 = \frac{0.9 \cdot l_{eff} t_a^3}{m^3}$	
k ₆	Flange cleat in bending	$k_6 = \frac{0.9 \cdot l_{eff} t_a^3}{m^3}$	
k ₁₀	Bolts in tension (for a single bolt-row)	$k_{10} = 1.6 A_s / L_b$	
k11 (or k17)	Bolts in shear	$k_{11}(or \ k_{17}) = \frac{16 \cdot n_b \cdot d^2 \cdot f_{ub}}{E \cdot d_{M16}}$	
k ₁₂ (or k ₁₈)	Bolts in bearing (for each component <i>j</i> on which the bolts bear)	$k_{12}(or \ k_{18}) = \frac{24 \cdot n_b \cdot k_b \cdot k_t}{E}$	$\cdot d \cdot f_{ub}$
k 13	Concrete in compression (including grout)	$k_{13} = \frac{E_c \sqrt{b_{eff} l_{eff}}}{1,275 E}$	
K 14	Plate in bending under compression	$k_{14} = \infty$	
k15	Base plate in bending under tension (for a single bolt row in tension)	With prying forces $k_{15} = \frac{0.85 \cdot l_{eff} t_p^3}{m^3}$	Without prying forces $k_{15} = \frac{0.425 \cdot l_{eff} t_p^3}{m^3}$
k ₁₆	Flange cleat in bending	With prying forces $k_{16} = 1.6 A_s/L_b$	Without prying forces $k_{16} = 2,0 A_s/L_b$

with

 $A_{vc} \\$

β

the shear area of the column

- z the lever arm
 - the transformation parameter
- beff the effective width of the column web
- $d_c \qquad \qquad \text{the clear depth of the column web} \\$
- leff the smallest effective length for the bolt
- m the distance bolt to beam/column
 - web
- As the tensile stress area of the bolt
- L_b the elongation length of the bolt

5.2.2. Calculation of the stiffness in detail

In Table 6.10 of the EN 1993-1-8 (Ref.[1]) the stiffness coefficients which has to be taken into account, are given.

Beam-to-column joint with bolted end-plate connections	Number of bolt-rows in tension	Stiffness coefficients k_i to be taken into account	
Single-sided	One	k ₁ ; k ₂ ; k ₃ ; k ₄ ; k ₅ ; k ₁₀	
Single-sided	Two or more	$k_1; k_2; k_{eq}$	
Double sided – Moments equal and opposite	One	$k_2; k_3; k_4; k_5; k_{10}$	
Double sided - Moments equal and opposite	Two or more	k ₂ ; k _{eq}	
Double sided – Moments unequal	One	$k_1; k_2; k_3; k_4; k_5; k_{10}$	
Double sided – Moments unequal	Two or more	$k_1; k_2; k_{eq}$	
Beam splice with bolted end-plates	Number of bolt-rows in tension	Stiffness coefficients k_i to be taken into account	
Dauble sided. Memorite arrial and emocite	One	k ₅ [left]; k ₅ [right]; k ₁₀	
Double sided - Moments equal and opposite	Two or more	k _{eq}	
Base plate connections	Number of bolt-rows in tension	Stiffness coefficients k_l to be taken into account	
	One	k ₁₃ ; k ₁₅ ; k ₁₆	
Base plate connections	Two or more	k_{13} ; k_{15} and k_{16} for each bolt row	

Table 6.10: Joints with bolted end-plate connections and base plate connections

For this connection (Single – sided), k_1 , k_2 , k_3 , k_4 and k_{10} has to be calculated, using the formulas of Table 6.11 of EN 1993-1-8.

5.2.2.1. Column web in tension: k₃

$$k_3 = \frac{0.7 \ b_{eff,t,wc} \ t_{wc}}{d_c}$$

⇒ b_{eff,t,wc} is the effective width of the column web in tension from 6.2.6.3. For a joint with a single boltrow in tension, b_{eff,t,wc} should be taken as equal to the smallest of the effective lengths l_{eff} given for this bolt-row in Table 6.4 or Table 6.5.

 $\Rightarrow \quad b_{eff,t,wc,row1} = 107,55$

 $\Rightarrow b_{eff,t,wc,row2} = 105$

$$k_{3,row1} = rac{0.7 \cdot 107,55 \cdot 7}{92} = 5,73 \text{ mm}$$

 $k_{3,row2} = rac{0.7 \cdot 105 \cdot 7}{92} = 5,59 \text{ mm}$

In SCIA Engineer:

4.1. Design rotational stiffness

row	k4[mm]	k3[mm]	k5[mm]	k10[mm]	kef f[mm]
1	8.59	5.73	7.55	6.47	1.73
2	8.39	5.59	7.57	6.47	1.71

5.2.2.2. Column flange in bending: k4

$$k_4 = \frac{0.9 \ l_{eff} t_p^3}{m^3}$$

 \Rightarrow leff is the smallest of the effective lengths given for this bolt-row given in Table 6.4 or Table 6.5.

⇒ l_{eff} = 107,55

 $\Rightarrow \quad b_{eff,t,wc,row1} = 107,55$

 $\Rightarrow b_{eff,t,wc,row2} = 105$

$$k_{4,row1} = \frac{0.9 \cdot 107,55 \cdot 12^3}{26.9^3}$$
 = 8,59 mm
 $k_{4,row2} = \frac{0.9 \cdot 105 \cdot 12^3}{26.9^3}$ = 8,39 mm

In SCIA Engineer:

4.1.	Design	rotational	stiffness
------	--------	------------	-----------

row	k4[mm]	k3[mm]	k5[mm]	k10[mm]	kef f[mm]
1	8.59	5.73	7.55	6.47	1.73
2	8.39	5.59	7.57	6.47	1.71

5.2.2.3. End-plate in bending: k₅

 $k_5 = \frac{0.9 \ l_{eff} t_p^3}{m^3}$

⇒ leff is the smallest of the effective lengths given for this bolt-row given in Table 6.6.

 \Rightarrow I_{eff, row1} = 70

⇒ l_{eff, row2} = 185,51

$$k_{5,row 1} = \frac{0.9 \cdot 70 \cdot 12^3}{(24,34)^3} = 7,55 \text{ mm}$$

 $k_{5,row 2} = \frac{0.9 \cdot 185,51 \cdot 12^3}{(33,66)^3} = 7,57 \text{ mm}$

In SCIA Engineer:

4.1. Design rotational stiffness

row	k4[mm]	k3[mm]	k5[mm]	k10[mm]	keff[mm]
1	8.59	5.73	7.55	6.47	1.73
2	8.39	5.59	7.57	6.47	1.71

5.2.2.4. Bolts in tension: k₁₀

$$k_{10} = 1.6 \frac{A_s}{L_b}$$

- \Rightarrow A is the tensile stress area of the bolt A_s = 157mm²
- ⇒ L_b is the bolt elongation length, taken as equal to the grip length (total thickness of material and washers), plus half the sum of the height of the bolt head and the height of the nut.
- \Rightarrow L_b = t_f + t_p + t_{washer} + (h_{bolt_head} + h_{nut})/2

$$= 12 + 12 + 3,3 + (10 + 13)/2$$

= 38,8mm

$$k_{10} = 1, 6 \cdot \frac{157}{38,8} = 6,47 \text{ mm}$$

In SCIA Engineer:

4.1. Design rotational stiffness

row	k4[mm]	k3[mm]	k5[mm]	k10[mm]	keff[mm]
1	8.59	5.73	7.55	6.47	1.73
2	8.39	5.59	7.57	6.47	1.71

5.2.2.5. Equivalent stiffness

The effective stiffness $k_{eff,r}$ for bolt-row r should be determined from

$$k_{eff,r} = 1/\sum_{i} (\frac{1}{k_{i,r}})$$
 (see also formula (6.30) of EN 1993-1-8 – Ref.[1])

In the case of a beam-to-column joint with an end-plate connection, k_{eq} should be based upon (and replace) the stiffness coefficients k_i fork₃, k_4 , k_5 and k_{10} .

-
$$k_{\text{eff,row1}} = \frac{1}{\frac{1}{5,73} + \frac{1}{8,59} + \frac{1}{7,55} + \frac{1}{6,47}} = 1,73$$

-
$$k_{\rm eff,row2} = \frac{1}{\frac{1}{5,59} + \frac{1}{8,39} + \frac{1}{7,57} + \frac{1}{6,47}} = 1,71$$

In SCIA Engineer:

4.1. Desig	I.1. Design rotational stiffness							
row	k4[mm]	k3[mm]	k5[mm]	k10[mm]	keff[mm]			
1	8.59	5.73	7.55	6.47	1.73			
2	8.39	5.59	7.57	6.47	1.71			

The equivalent lever arm z_{eq} should be determined from:

$$\begin{aligned} z_{eq} &= \frac{\sum_{r} k_{eff,r} h_{r}^{2}}{\sum_{r} k_{eff,r} h_{r}} = \frac{k_{eff,row1} h_{row1}^{2} + k_{eff,row2} h_{row2}^{2}}{k_{eff,row1} h_{row1} + k_{eff,row2} h_{row2}} \\ &= \frac{1,73 \cdot (245,4)^{2} + 1,71 \cdot (175,4)^{2}}{1,73 \cdot 245,4 + 1,71 \cdot 175,4} \\ z_{eq} &= \frac{156791}{724,48} = 216,42 \ mm \end{aligned}$$

The equivalent stiffness keq can now be determined from:

$$k_{eq} = \frac{\sum_{r(k_{eff,r}h_r)}}{z_{eq}}$$
(see also formula (6.29) from En 1993-1-8 (Ref.[1]))
$$k_{eq} = \frac{1,73 \cdot 245,4 + 1,71 \cdot 175,4}{216,42} = 3,35 \ mm$$

And those values are also given in SCIA Engineer:

Sj data		
Sj	11.60	MNm/rad
Sj,ini	11.60	MNm/rad
z	216.42	mm
mu	1.00	
k1	2.30	mm
k2	8.70	mm
keg	3.35	mm

5.2.2.6. Column web panel in shear: k₁

$$k_1 = \frac{0,38 \, A_{vc}}{\beta \, z}$$

z is the lever arm from Figure 6.15

Following option e) A more accurate value may be determined by taking the lever arm z as equal to zeq obtained using the method given in 6.3.3.1.

 \Rightarrow z = z_{eq} = 216,8 = 216,8mm

 β is the transformation parameter from 5.3 (7)

 $\Rightarrow \beta = 1$

```
k_1 = \frac{0.38 \cdot 1312}{1 \cdot 216.8} = 2,30 \text{ mm}
In SCIA Engineer:
```

Sj data		
Sj	11.60	MNm/rad
Sj,ini	11.60	MNm/rad
Z	216.42	mm
mu	1.00	
k1	2.30	mm
k2	8.70	mm
keg	3.35	mm

5.2.2.7. Column web in compression: k₂

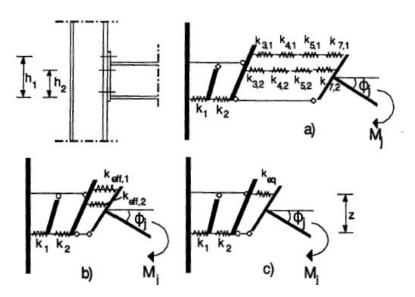
 $k_{2} = \frac{0.7 \ b_{eff,c,wc} \ t_{wc}}{d_{c}}$ $\Rightarrow \ d = h_{c} \ -2 \ (t_{f} + r_{c}) = 140 - 2 \ (12 + 12) = 92 \ mm$ $\Rightarrow \ b_{eff} = t_{fb} + 2\sqrt{2}a_{p} + 5(t_{fc} + s) + s_{p}$

 $s_p = 12 + (15 - \sqrt{2} \cdot 5) = 19,93$

Above the bottom flange, there is sufficient room to allow 45° dispersion

Below the bottom flange, there is NOT sufficient room. Thus the dispersion is limited.

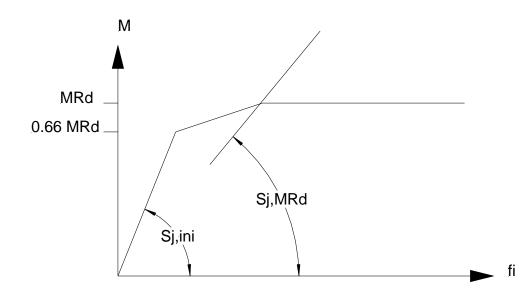
 $\Rightarrow \quad b_{eff} = 9,2 + 2\sqrt{2} \cdot 5 + 5(12 + 12) + 19,93 = 163,27mm$


$$k_2 = \frac{0.7 \cdot 163.3 \cdot 7}{92} =$$
8,70 mm

In SCIA Engineer:

Sj data		
Sj	11.60	MNm/rad
Sj,ini	11.60	MNm/rad
z	216.42	mm
mu	1.00	
k1	2.30	mm
k2	8.70	mm
keg	3.35	mm

5.2.2.8. Design rotational stiffness


When all different stiffness of all components are known, we can assembly this to one stiffness for the joint.

The program will calculate 3 stiffnesses :

Sj,ini	the initial rotational stiffness
Sj	the rotational stiffness, related to the actual moment M _{j,Sd}
Sj,MRd	the rotational stiffness, related to Mj,Rd
	(without the influence of the normal force)

The moment-rotation diagram is based on the values of Sj,ini and Sj,MRd.

$$S_j = \frac{E z^2}{\mu \sum_i \frac{1}{k_i}} = \frac{E z^2}{\mu \cdot \left(\frac{1}{k_1} + \frac{1}{k_2} + \frac{1}{k_{eq}}\right)}$$

⇒ z = 216,4 mm

- \Rightarrow μ is the stiffness ration S_{j, ini} / S_j
 - $\circ \quad \text{ If } M_{j,\text{Ed}} \leq M_{j,\text{Rd}} \Rightarrow \mu = 1$
 - $\circ \quad \text{ If $2/3$ $M_{j,Rd} < M_{j,Ed} \le M_{j,Rd} => μ = (1,5 $M_{j,Ed} / M_{j,Rd})$ $^{\psi}$}$

 $M_{j,Ed} = 10 \text{ kNm}$

 $M_{j,Rd} = 34,9 \text{ kNm} \Rightarrow 2/3 M_{j,Rd} = 23,3 \text{ kNm}$

$$\Rightarrow \mu = 1$$

$$\Rightarrow S_j = \frac{E z^2}{\mu \sum_i \frac{1}{k_i}}$$

$$= 210000 \cdot (216.42)^2$$

$$S_j = \frac{210000 \cdot (216,42)^2}{1 \cdot (\frac{1}{2,30} + \frac{1}{8,70} + \frac{1}{3,35})} \cdot 10^{-6} = 11596 \text{ kNm/rad}$$

In SCIA Engineer:

Sj data		
Sj	11.60	MNm/rad
Sj,ini	11.60	MNm/rad
z	216.42	mm
mu	1.00	
k1	2.30	mm
k2	8.70	mm
keq	3.35	mm

5.3. The classification on stiffness

The joint is classified as rigid, pinned or semi-rigid according to its stiffness by using the initial rotational stiffness Sj,ini and comparing this with classification boundaries given in EN 1993-1-8 (Ref. [1]).

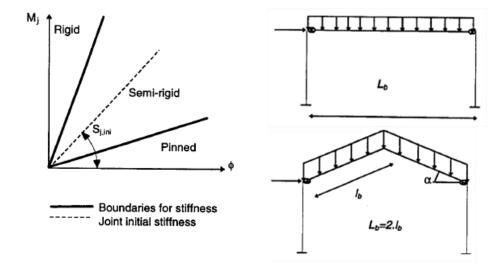
- If Sj,ini >= Sj,rigid, the joint is rigid.
- If Sj,ini <= Sj,pinned, the joint is classified as pinned.
- If Sj,ini<Sj,rigid and Sj,ini>Sj,pinned, the joint is classified as semi-rigid.

For braced frames:

Sj, rigid =
$$8\frac{EI_b}{L_b}$$

Sj, pinned = $0.5\frac{EI_b}{L_b}$
Sj, rigid = $25\frac{EI_b}{L_b}$

For unbraced frames:


$$L_b$$

Sj, pinned = $0.5 \frac{EI_b}{L_b}$

For column base joints:

Sj, rigid =
$$15 \frac{\text{EI}_{c}}{\text{L}_{c}}$$

Sj, pinned = $0.5 \frac{\text{EI}_{c}}{\text{L}_{c}}$

with

the second moment of area of the
beam
the span of the beam
the second moment of area of the
column
the storey height of the column
the Young modulus

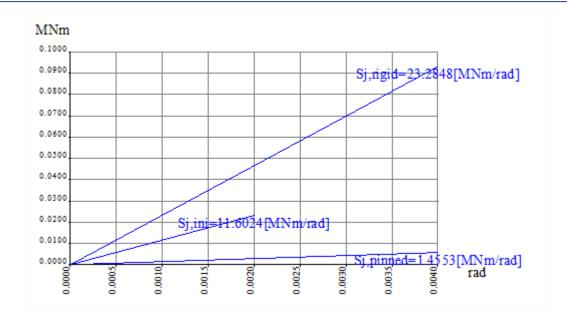
In our example we have chosen for a braced frame.

SCIA Engineer will take the length of the beam in SCIA Engineer as the length for L_b . But you can change this value manually:

Properties	Ψ ×
Steel Connection (1)	- Va V/ /
	🗶 🍣
Name	Conn
Node	N2
Type of loads	Load cases 🔹
Load cases	LC1 👻
Load case/Combination	All
Frame type	braced
Connection geometry	Simple 1
Side ->[B3]	
Connection type	Frame bolted
End plate	×
Backing plate	
Bolts	×
Haunch	
Top stiffener	
Bottom stiffener	
Diagonal stiffener	
Web doubler	
Update stiffness	
Calculation type	for loadcase/combinations
Output	Detailed 🔹
Length for stiffness classification [m]	2,000
Stiffeners	
Between bolt-rows 1 2	
Between bolt-rows 2 3	
Weld	
A-12	

$$S_{j,rigid} = 8 \frac{E \cdot I_b}{L_b} = 8 \frac{(210000 \frac{N}{mm^2}) \cdot (2,772 \cdot 10^7 mm^4)}{2000 mm} = 23,28 \text{ MNm/rad}$$

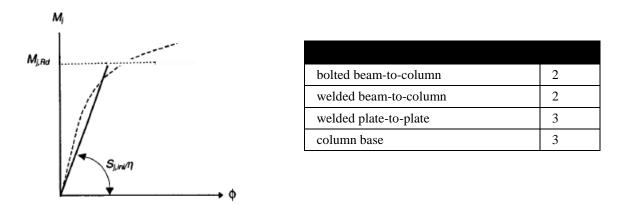
$$S_{j,pinned} = 0,5 \frac{E \cdot I_b}{L_b} = 0,5 \frac{(210000 \frac{N}{mm^2}) \cdot (2,772 \cdot 10^7 mm^4)}{2000 mm} = 1,46 \text{ MNm/rad}$$

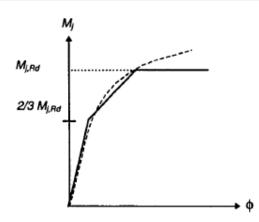

In SCIA Engineer:

4.2. Stiffness classification

Stiffness data		
E	210000.00	N/mm^2
lb	27720000.00	m m ^ 4
Lb	2000.00	mm
frame type	braced	
S1	23.28	M N m / rad
S2	1.46	M N m / rad

System SEMI RIGID


And this is also given in SCIA Engineer in a picture:


5.4. Transferring the joint stiffness to the analysis model

When requested, the actual stiffness of the joint can be transferred to the analysis model. The linear spring value for $\langle \mathbf{fi} \mathbf{y} \rangle$ (in the hinge dialog) is taken as Sj,ini divided by the stiffness modification coefficient η .

For asymmetric joint s which are loaded in both directions (i.e. tension on top and tension in bottom), the linear spring value for $<\mathbf{fi} \ \mathbf{y}>$ (in the hinge dialog) is taken as the smallest Sj,ini (from both directions) divided by the stiffness modification coefficient η :

At the same time, a non-linear function is generated, representing the moment-rotation diagram.

You can add this stiffness to the connection by activating the option "Update Stiffness":

Properties	
Steel Connection (1)	🖃 🔽 🏹 🖉
	📚 🍣
Name	Conn
Node	N2
Type of loads	*Load cases 🔹
Load cases	LC1 💌
Load case/Combination	All
Frame type	braced 💌
Connection geometry	Simple T
Side ->[B3]	
Connection type	Frame bolted
End plate	✓ …
Backing plate	
Bolts	
Haunch	
Top stiffener	
Bottom stiffener	
Diagonal stiffener	
Web doubler	
Update stiffness	
Calculation type	for loadcase/combinations
Output	Detailed 👻
Length for stiffness classification [m]	2,000
Stiffeners	
Between bolt-rows 1 2	
Between bolt-rows 2 3	
Weld	
Weld	

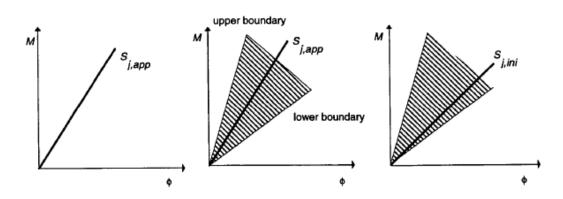
After recalculating the project, a hinge will be added to this connection with this stiffness $S_{j, ini /\eta}$.

<u> </u>		_		
Properties		Ψ×		
Hinge on beam (1)	- Va V	40		👝 💭
				YVV2
Name	H1			
Position	Begin	+		
ux	Rigid	-		
uy	Rigid	+		
uz	Rigid	-		
fix	Rigid	-	4	
fiy	Flexible	+		
Stiff - fiy [MNm/rad]	5,8012e+00			
fiz	Rigid	+		
Member	B3			

If you want to take into account the non linear stiffness of the connection, you have to activate the following functionality in the Project Data menu:

	Dynamics			Nonlinearity		
Scia 'll' Engineer	Initial stress			Initial deformations and curvature		
	Subsail			2nd order - geometrical poplinearity		
	Nonlinearity		Γ	Beam local nonlinearity	V	
	Stability			Support nonlinearity/ Soil spring	1	•
	Climatic loads			Friction support/Soil spring		
	Prestressing			Sequential analysis		
	Pipelines			Dynamic Relaxation		
	Structural model	\checkmark		Steel		=
	BIM properties			Plastic hinges		
	Parameters			Fire resistance		
	Mobile loads			Connection modeller		
	Automated GA drawings	Frame rigid connectio	Frame rigid connections	1		
	LTA - load cases			Frame pinned connections		
	External application checks			Grid pinned connections		
	Property modifiers			Bolted diagonal connections		
	Bridge design			Expert system		
	Customized design form			Connection monodrawings		
	Old style document	V		Scaffolding		-

And after the calculation, you can select the input hinge and choose here for a non linear stiffness.


The stiffness function will be registered automatically for each node in SCIA Engineer. So you only have to choose the corresponding node for each connection.

Properties	ф.	\times
Hinge on beam (1)	🖃 Va V/ (7
	e 🦛 🗴	6
Name	H1	
Position	Begin	-
ux	Rigid	-
uy	Rigid	-
uz	Rigid	-
fix	Rigid	-
fiy	Nonlinear	-
Stiff - fiy [MNm/rad]	5,8012e+00	
Fun - fiy	Node : N2-[B3] 💽	
fiz	Rigid	-
Member	B3	

Nonlinear functi	ions		×
🏓 🤮 🏒 📑 I	ki <u>n</u> ciđ	🛛 😂 🔚 🛛 Rotation	•
Node : N2-[B3]			
		M [kNm]	
Name	Node : N2-[B3]	34.91	
Туре	Rotation	23.25	
Positive end	Free		
Negative end	Free		
Impulse			
1 [rad,kNm]	-0,0270 / -34,91		
2 [rad,kNm]	-0,0090 / -34,91	0.0090	fi [rad]
3 [rad,kNm]	-0,0020 / -23,25	6 8 8	
4 [rad,kNm]	0,0000 / 0,00		
5 [rad,kNm]	0,0020 / 23,25	-23.25	
6 [rad,kNm]	0,0090 / 34,91		
7 [rad,kNm]	0,0270 / 34,91	34.91	
Create new function	n New In	ert Edit Delete	ОК

5.5. The required stiffness

The actual stiffness of the joints is compared with the required stiffness, based on the approximate joint stiffness used in the analysis model. A lower boundary and an upper boundary define the required stiffness.

When a linear spring is used in the analysis model, we check the following :

When Sj,ini >= Sj,low and Sj,ini<=Sj,upper, the actual joint stiffness is conform with the applied Sj,app in the analysis model.

When a non-linear function is used during the analysis model, we check the following :

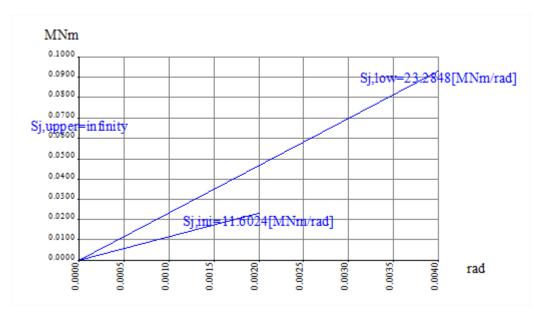
When Sj >= Sj,low and Sj<=Sj,upper, the actual joint stiffness is conform with the applied Sj,app in the analysis model.

Frame	Lower boundary Sj,low		Upper boundary Sj,upper
Braced	$\frac{8 \cdot Sj, app \cdot E \cdot I_{b}}{10 \cdot E \cdot I_{b} + Sj, app \cdot L_{b}}$	$Sj, app \le \frac{8 \cdot E \cdot I_b}{L_b}$	$\frac{10 \cdot \text{Sj}, \text{app} \cdot \text{E} \cdot \text{I}_{\text{b}}}{8 \cdot \text{E} \cdot \text{I}_{\text{b}} - \text{Sj}, \text{app} \cdot \text{L}_{\text{b}}}$
		$Sj, app > \frac{8 \cdot E \cdot I_b}{L_b}$	×
Unbraced	$\frac{24 \cdot Sj, app \cdot E \cdot I_{b}}{30 \cdot E \cdot I_{b} + Sj, app \cdot L_{b}}$	$Sj, app \le \frac{24 \cdot E \cdot I_b}{L_b}$	$\frac{30 \cdot \text{Sj}, \text{app} \cdot \text{E} \cdot \text{I}_{\text{b}}}{24 \cdot \text{E} \cdot \text{I}_{\text{b}} - \text{Sj}, \text{app} \cdot \text{L}_{\text{b}}}$
		$Sj, app > \frac{24 \cdot E \cdot I_b}{L_b}$	×

The boundaries are calculated with the following formulas:

And for a column base connection:

Lower boundary		Upper boundary
$\frac{16 \cdot Sj, app \cdot E \cdot I_{c}}{20 \cdot E \cdot I_{c} + Sj, app \cdot L_{c}}$	$Sj, app \le \frac{16 \cdot E \cdot I_c}{L_c}$	$\frac{20 \cdot \text{Sj}, \text{app} \cdot \text{E} \cdot \text{I}_{\text{c}}}{16 \cdot \text{E} \cdot \text{I}_{\text{c}} - \text{Sj}, \text{app} \cdot \text{L}_{\text{c}}}$
	$Sj, app > \frac{16 \cdot E \cdot I_c}{L_c}$	∞


with	I₅ L₅ Lc E Sj,app Sj,ini Sj,low Sj,upper	the second moment of area of the beam the span of the beam the second moment of area of the column the storey height of the column the Young modulus the approximate joint stiffness the actual initial joint stiffness the lower boundary stiffness the upper boundary stiffness
	Sj	the actual joint stiffness

In this case we have a braced system and we did not take into account any stiffness, so the upper boundary equals infinity and the lower boundary is the boundary for a rigid connection:

4.3 Check of stiffness requirement

Stiffness data		
Fi y	infinity	MNm/rad
Stiffness modification coef.	2.00	
Sj, app	infinity	M N m / r a d
Sj,lower boundary	23.28	MNm/rad
Sj,upper boundary	infinity	M N m / r a d

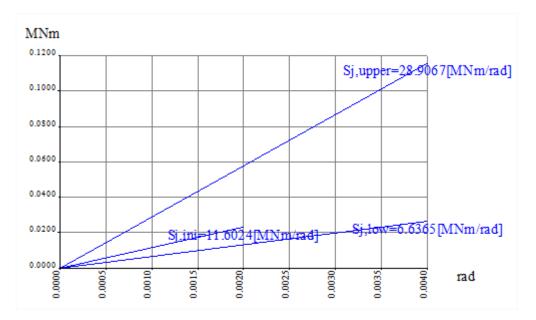
```
Sj,ini is not inside the boundaries.
The actual joint stiffness does not conform with the joint stiffness of the analysis model.
```


And also in the graph you can see that Sj,ini is not between the boundaries:

When activating the option "Update stiffness" and recalculating the project, the value for Sj,app equals Sj,ini. The stiffness taken into account in the calculation equals Sj,ini/2 because $\eta = 2$ for a beam-column connection.

In SCIA Engineer we have:

The stiffness taken into account in the calculation, thus: Sj,ini/ η = Sj,ini/2 = 11,60 MNm/rad /2 = 5,80 MNm/rad
Factor η and η = 2 for a beam-column connection
In this case Sj,ini = 11,60 MNm
For a braced system:
$=\frac{8 \cdot S_{j,app} \cdot E \cdot I_b}{10 \cdot E \cdot I_b + S_{j,app} \cdot L_b}$
$= \frac{8 \cdot \frac{11,60MNm}{rad} \cdot 210000MPa \cdot 2,77E - 05 m^{4}}{10 \cdot 210000MPa \cdot 2,77E - 05 m^{4} + 11,60MNm/rad \cdot 2m}$
= 6,64 MNm/rad
For a braced system: First we have to check if Sj,app is bigger or smaller than $\frac{8 \cdot E \cdot I_b}{L_b} = \frac{8 \cdot 210000 MPa \cdot 2,77E - 05 m^4}{2m} = 23,3 MPa$ Thus $S_{j,app} = 11,60 \le \frac{8 \cdot E \cdot I_b}{L_b}$ And now the upper boundary can be calculated with the following formula: $= \frac{10 \cdot S_{j,app} \cdot E \cdot I_b}{8 \cdot E \cdot I_b - S_{j,app} \cdot L_b}$ $= \frac{10 \cdot \frac{11,60MNm}{rad} \cdot 210000MPa \cdot 2,77E - 05 m^4}{(8 \cdot 210000MPa \cdot 2,77E - 05) - (11,60MNm/rad \cdot 2m)}$ $= 28,90 \text{ MNm/rad}$


4.3 Check of stiffness requirement

Stiffness data		
Fi y	5.80	MNm/rad
Stiffness modification coef.	2.00	
Sj,app	11.60	MNm/rad
Sj,lower boundary	6.64	MNm/rad
Sj,upper boundary	28.91	MNm/rad

Sj,ini is inside the boundaries.

The actual joint stiffness conforms with the joint stiffness of the analysis model.

And now Sj,ini will be in between the two boundaries on the graph also:

6. Calculation of welds

6.1. Default method

The default values for the double fillet welds to the beam flange a_f and for the double fillet welds to the beam web a_w , are as follows:

fyd	Weld size
≤ 240 N/mm²	a _f ≥ 0.5 t _{fb} a _w ≥ 0.5 t _{wb}
> 240 N/mm²	a _f ≥ 0.7 t _{fb} a _w ≥ 0.7 t _{wb}

With: a_f The throat thickness of weld at beam flange (fillet weld)

a_w The throat thickness of weld at beam web (fillet weld)

t_{fb} The thickness of the beam flange

twb The thickness of the beam web

In the example **CON_004.esa**:

 $\begin{array}{l} t_{fb}=9,2 \text{ mm} \\ t_{wb}=5,9 \text{ mm} \end{array}$

And the material S235 has been used. So:

 $a_f \ge 0.5 t_{fb} = 4.6 \text{ mm}$

 \Rightarrow af will be taken as 5 mm

In SCIA Engineer:

data			
IRd	34.91	kNm	7
Samma	1.40		
h	210.80	mm	
FRd	231.86	kN	l
NT, Rd	237.82	kN	
N	231.86	kN	1
Fu	360.00	N/mm^2	
BetaW	0.80		1
minimum af	4.14	mm	
af	5.00	mm	
Minimum th	8.97	mm	

 $a_w \ge 0.5 t_{wb} = 2.95 mm$

 \Rightarrow a_w will be taken as 3 mm

In SCIA Engineer:

6.2. Calculation aw

data		
Ft	62.90	kN
Fv	7.23	kN
lw	201.57	mm
Fu	360.00	N / m m ^ 2
BetaW	0.80	
minimum aw (a2)	1.00	mm
aw	3.00	mm

Default this method is used.

It is also possible to calculate the welds with the formulas given in the next chapters, but then the option "Always adapt weldsizes" has to be activation in the menu "Steel -> Connections -> Connections Setup".

Connections setup	Connections setup				
⊡- Standard EN		lame	Standard EN		
 General data Frame bolked/welded 	Ŧ	Connection General data Frame bolted/welded			
Base plate Expert system Bolted diagonal		Transformation of efforts Weld size of haunch	In axis Length	* *	
Thickness		Allowable relative error for moments [%] [-] Omitting weld in beff [FcRd]	5,00		
		Include stress in column flange Capacity of beam flange	no Prof+Haunch	•	
		Use alternative method for Pt,Rd,1 Always adapt stiffeners	no		
		Always adapt weldsizes Apply stiffness classification check	V yes V yes		
		Use internal forces for weld size calculation Use stiffeners in column web panel resistance	no		
		Use stiffeners in column web panel resistance Use last bolt only for shear capacity	no		

6.2. Calculation of a_f

The weld size a is designed according to the resistance of the joint. The design force in the beam flange can be estimated as:

$$F_{Rd} = \frac{M_{Rd}}{h}$$

With:

F_{Rd} The design force in the beam flange

M_{Rd} The design moment resistance of the connection

H The lever arm of the connection

The design resistance of the weld F_w shall be greater than the flange force F_{Rd} , multiplied by a factor γ . The value of the factor γ is:

 γ = 1.7 for unbraced frames γ = 1.4 for braced frames

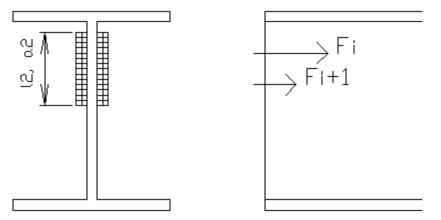
However, in no case shall the weld design resistance be required to exceed the design plastic resistance of the beam flange $N_{t,Rd}$:

$$N_{t,Rd} = \frac{b_f \cdot t_{fb} \cdot f_{yb}}{\gamma_{M0}}$$

With	bf	The beam flange width
	t _{fb}	The beam flange thickness
	f _{yb}	The yield strength of the beam

So, we have $F_w = min (N_{t.Rd}, \gamma F_{Rd})$

The weld size design for ar:


$$a_f \geq \frac{F_w \cdot \gamma_{MW} \cdot \beta_W}{f_u \cdot b_f \cdot \sqrt{2}}$$

With

The design resistance of the weld

- F_{w} The beam flange width bw
- The ultimate tensile strength of the weaker part fu
- The correlation factor βw
- The partial safety factor for welds γMw

6.3. Calculation of a_w

For all possible bolt groups, the maximum tension pro unit length is calculated.

The tension pro unit length is $(F_i + F_{i+1})/l2$.

12 is taken as the effective length of non-circular pattern for the considered bolt group.

On the weld 2 x l2 x a2, the normal force N (=Fi + Fi+1) and the shear force D is acting. The shear force D is taken as that part of the maximum internal shear force on the node that is acting on the bolt rows i and i+1.

To determine the weld size a2 in a connection, we use a iterative process with a2 as parameter until the Von Mises rules is respected:

$$\begin{split} &\sqrt{\sigma_1^2 + 3 \cdot \left(\tau_1^2 + \tau_2^2\right)} \le \frac{f_u}{\beta_w \cdot \gamma_{M_w}} \quad \text{and} \quad \sigma_1 \le \frac{f_u}{\gamma_{M_w}} \\ &\sigma_1 = \tau_2 = \left(\frac{N}{A}\right) \frac{1}{\sqrt{2}} \\ &\tau_1 = \frac{D}{2 \cdot a_2 \cdot l_2} \end{split}$$

With	fu βw	the ultimate tensile strength of the weaker part The correlation factor
	γ _{Mw} A	The partial safety factor for welds 2 $a_2 I_2$

6.4. Calculation with the internal forces

In the previous chapters the calculation of a_f and a_w are given, using the design resistance values. In SCIA Engineer it is also possible to calculate a_f and a_w using the internal forces of the chosen combination or load case. This will result in a lower value for the welds than with the previous calculation, since the internal forces are lower than the design forces, if the connection is satisfying all checks.

You can activate this in SCIA Engineer via "Steel -> Connections -> Connections setup -> Frame bolted/welded" and here with the option "Use internal forces for weld size calculation".

Connections setup	P. PARTING	12.	×
⊡- Standard EN	Name	Standard EN	
⊡- Connection			
General data Frame bolted/welded	General data		
- Base plate	Frame bolted/welded		
Expert system	Transformation of efforts	In axis	
Bolted diagonal	Weld size of haunch	Length	
Thickness	Allowable relative error for mome	ents [%] [-] 5,00	
	Omitting weld in beff [FcRd]	in no	
	Include stress in column flange	m no	
	Capacity of beam flange	Prof+Haunch	
	Use alternative method for Pt,R	d,1 🗖 no	
	Always adapt stiffeners	no 📃	
	Always adapt weldsizes	no 📃	
	Apply stiffness classification che	ck 🛛 🗸 yes	
	Use internal forces for weld size	calculation no	
	Use stiffeners in column web pa	nel resistance 🔲 no	
	Use last bolt only for shear capa	no 🗖 no	

7. Ductility class

with

7.1. Ductility classes

The following classification is valid for joints:

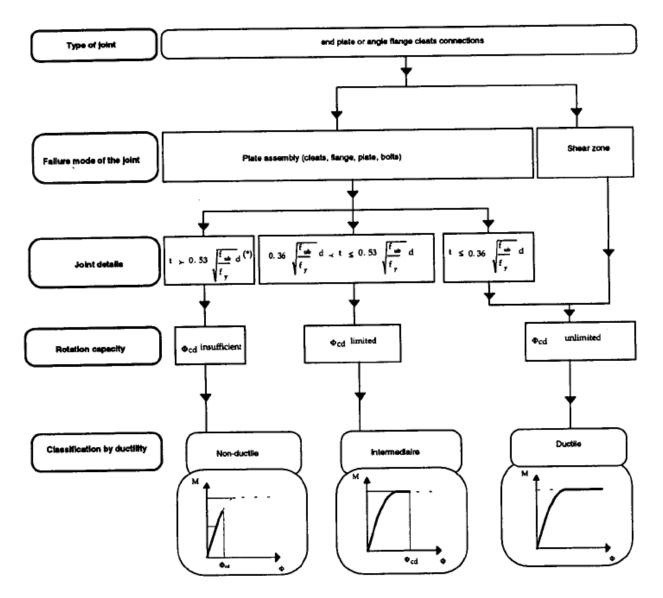
Class 1 joint: Mj,Rd is reached by full plastic redistribution of the internal forces within the joints and a sufficiently good rotation capacity is available to allow a plastic frame analysis and design.

Class 2 joint: Mj,Rd is reached by full plastic redistribution of the internal forces within the joints but the rotational capacity is limited. An elastic frame analysis possibly combined with a plastic verification of the joints has to be performed. A plastic frame analysis is also allowed as long as it does not result in a too high required rotation capacity of the joints where the plastic hinges are likely to occur.

Class 3 joint: brittle failure (or instability) limits the moment resistance and does not allow a full redistribution of the internal forces in the joints. It is compulsory to perform an elastic verification of the joints unless it is shown that no hinge occurs in the joint locations.

From this description it is clear that it is better to modell a joint as a ductile joint. In this case, when failure appears, the load can be transferred to other parts of the joint and you can see that it is going to brake slowly: you can see that the column web is yieling for example. If you have a brittle failure mode (non-ductile) the connection will brake immediately when reaching the failure mode.

7.2. Ductility classification for bolted joints


If the failure mode of the joint is the situated in the shear zone of the column web, the joint is classified as a ductile, i.e. a class 1 joint .

If the failure mode is not in the shear zone, the classification is based on the following:

	Classification by ductility	Class
$t \le 0.36 \sqrt{\frac{f_{ub}}{f_y} d}$	Ductile	1
$0.36\sqrt{\frac{f_{ub}}{f_y}d} < t \le 0.53\sqrt{\frac{f_{ub}}{f_y}d}$	Intermediary	2
$t > 0.53 \sqrt{\frac{f_{ub}}{f_y} d}$	Non-ductile	3

า	t	the thickness of either the column flange or the endplate
	d	the nominal diameter of the bolts
	f _{ub}	the ultimate tensile strength of the bolt
	fy	the yield strength of the proper basic component

This principle is also shown in the graph below:

Calculation of this example following the schema above:

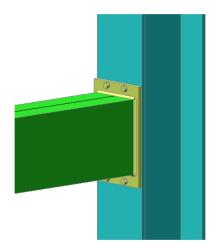
Type of joint: We have an end plate, so we can follow the schema

Failure mode of the joint: We know the tension in the bolts is limited by the column web in shear (see also chapter "Calculation of MRd). So the failure mode is in the shear zone. This will lead directly to a ductile joint.

And this is also shown in SCIA Engineer:

```
4.4 Ductility classification
The failure mode is situated in the column shear zone.
This results in a ductile classification for ductility : class 1.
```

7.3. Ductility classification for welded joints

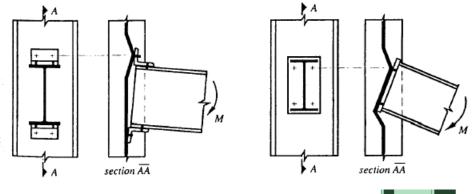

If the failure mode of the joint is the situated in the shear zone of the column web, the joint is classified as a ductile, i.e. a class 1 joint. If the failure mode is not in the shear zone, the joint is classified as intermediary for ductility, i.e. a class 2 joint.

8. Extra options in SCIA Engineer

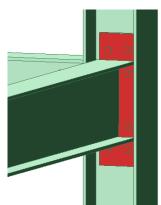
8.1. RHS beam

In SCIA Engineer it is possible to use an RHS beam and make a between this beam and a I or H column. For more info about this topic, we refer to Ref.[2].

A connection with an RHS beam can be found in **example CON_005.esa**, **node N7**.



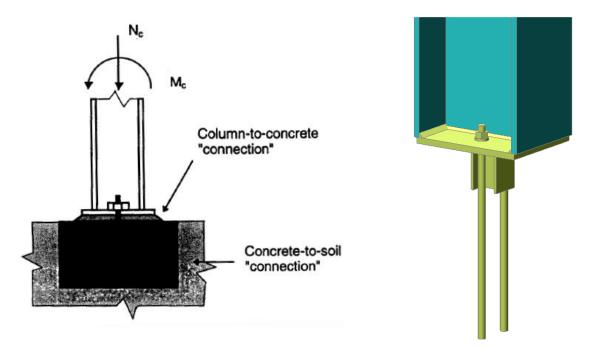
8.2. Column in minor axis configuration


In beam-to-column minor-axis joints, the beam is directly connected to the web of an I-section column, causing bending about the minor-axis of the column section. In order to determine the strength of a column web in bending and punching, the following failure mechanisms are considered:

- 1. Local mechanism : the yield pattern is localised in the compression zone or in the tension zone
- 2. Global mechanism : the yield line pattern involves both compression and tension zone.

For more info about this topic, we refer to Ref.[2].

An example of a minor axis connection is given in **Example CON_007.esa, node N4**.



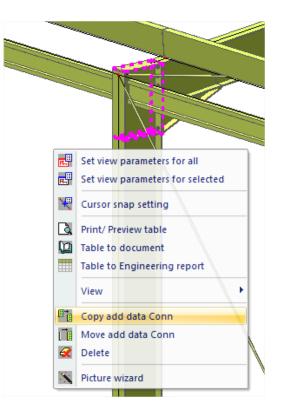
8.3. Base plate connections: shear iron, flange wideners

In a column base, 2 connection deformabilities need to be distinguished:

- 1. the deformability of the connection between the column and the concrete foundation
- 2. the deformability of the connection between the concrete foundation and the soil.

In the Frame Connect base plate design, the column-to-concrete "connection' is considered.

For more info about base plate design (shear irons, etc...), we refer to Ref.[2]. An example of a base plate connection in SCIA Engineer is given in **Example CON_005.esa**, **Node N9**.


8.4. Extra options for the calculation of connections

In SCIA Engineer it is possible to perform an overall check for multiple connections at the same time. For example we can have a look at **example CON_008.esa**. In this project several connections have been input.

8.4.1. Copy of connections

It is possible to select a connection and to copy this connection to another node. So first you have to select the connection and afterwards you can right click on the screen and choose for "Copy add data Conn".

Afterwards you have to select the nodes to which you want to copy your connection and click on escape to end this "copy function".

8.4.2. Multiple check of connections

With the option "Check" in the menu "Steel -> Connections" you can do an overall check for all connections in a project. In the preview window, you will find a list of all connections, with all checks next to it.

Check of connection

Steel	
Node	N2
Lc/Combi	NC2
Beam	B3
Unity check M/MRd [-]	0,74
Unity check V/VRd [-]	0,52
Unity check M/MRd + N/NRd [-]	0,81
Stiffness	Not applicable.
Node	N42
Lc/Combi	NC9
Beam	B35
Unity check M/MRd [-]	0,26
Unity check V/VRd [-]	0,05
Unity check M/MRd + N/NRd [-]	0,27
Stiffness	Not applicable.
Node	N44
Lc/Combi	NC2
Beam	B36
Unity check V/VRd [-]	0,06
Unity check M/MRd [-]	0,19
Unity check M/MRd + N/NRd [-]	0,19
Stiffness	Not applicable.
Node	N55
Lc/Combi	NC9
Beam	B43
Unity check M/MRd [-]	0,27
Unity check V/VRd [-]	0,05
Unity check M/MRd + N/NRd [-]	0,28
Stiffness	Not applicable.

8.4.3. Expert system

For this option, an extra module is needed, more specific module esasd.07.

Open example CON_004.esa and go to the functionalities and activate the option "Expert system":

Coio	Dynamics		Steel	
Scia C	Initial stress		Fire resistance	
9	Subsoil		Connection modeller	
	Nonlinearity		Frame rigid connections	1
	Stability		Frame pinned connections	
	Climatic loads		Grid pinned connections	
	Prestressing		Bolted diagonal connections	
	Pipelines		Expert system	\checkmark
	Structural model		Connection monodrawings	
	BIM properties		Scaffolding	
	Parameters		LTB 2nd Order	
	Mobile loads		ArcelorMittal	
	Automated GA drawings			
	LTA - load cases			
	External application checks			
	Property modifiers			
	Bridge design			
	Customized design form			
	Old style document	V		

Now delete the connection "Conn" in this example and add a new connection to this node. In the Actions menu, you will the option "Load from expert database" and choose for this option:

Actions	
Refresh	>>>
Open Preview	>>>
Save to expert database	
Load from expert database	B3
Setup of all connections	>>>
Bolt assembly	

This option is only available if you did not add anything yet to the connection.

In this expert database, you will see some registered connections in SCIA Engineer and the unity check of this connection. Choose the third connection with a unity check of 0.17.

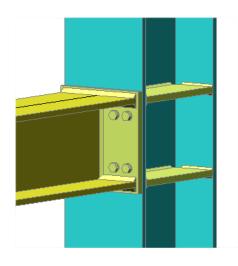
Name	Unity check	Pos.	Source	Bolt	OK
No connection	0.00		-		
EHT1/B/IPE220/15/M16-10.9	0.14	+	SCIA	10.9	Cancel
H3E/IPE220/16/20	0.17	+	DSTV	10.9	
H1E/IPE220/20/30	0.18	+	DSTV	10.9	
H1E/IPE220/16/25	0.26	+	DSTV	10.9	
H3E/IPE220/16/20	0.28	-	DSTV	10.9	

Now this connection will be input on the node and you can adapt this default connection afterwards.

When selecting a connection, you can choose for the option "Save to expert database" and save your connection in this database and use it again in another project.

8.4.4. The use of 4 bolts / row

When 4 bolts per row are used, additional capacity F_{add} is added to the bolt row/group capacity of the column flange and/or the endplate. F_{add} is defined for the following conditions:


- the capacity of the inner two bolts is equal to the bolt tension resistance (failure mode 3) or is defined by a circular pattern
- the bolt row / group is stiffened
- the bolt group contains only 1 bolt row

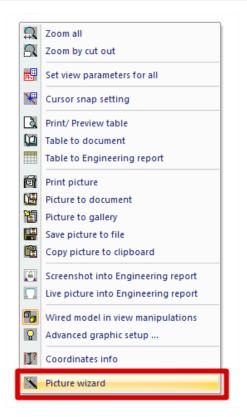
For more info about this topic, we refer to Ref.[2].

This option to use 4 bolts in a row can be activated with the three dots behind the bolts.

Bolts		×
	Name Selected bolt assembly Length [mm] Bolt pattern Reference Internal bolts distance [mm] External bolts distance [mm] 1.Row 2.Row 3.Row 1.Location [mm] 2.Location [mm] 3.Location [mm]	XXX1 M16 - 10.9 • 65 4 bolts/row • Bottom of the beam • 120 50 50 • 20 50 222 167 58 58
	Actions	>>>
	Update location Bolt pattern	
		OK Cancel

An example of this connection can be found in example CON_005.esa, node N8.

Additional capacity for 4 bolts/row

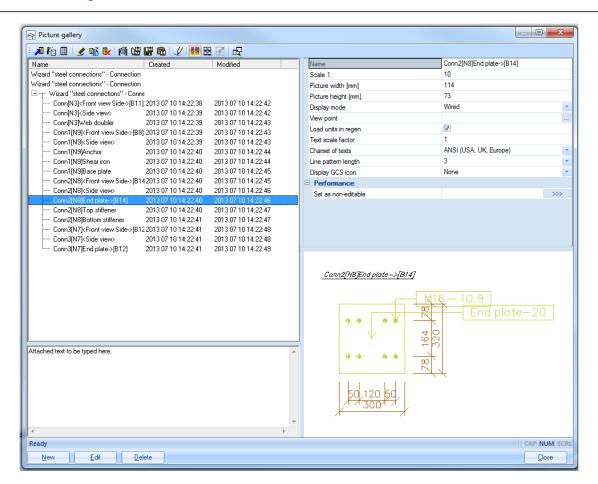

row	(Ft,fc,Rd)	group	(Ft,fc,Rd)
1	168.03	1-1	168.03
2	0.00	1-2	0.00

8.4.5. Monodrawings

It is possible to make automatic connection drawings in SCIA Engineer. To use this option, it is necessary to select the functionality "Connection monodrawings":

Scia	Dynamics		*	E	Steel	
SCIA I Engineer	Initial stress				Fire resistance	
	Subsoil				Connection modeller	
	Nonlinearity				Frame rigid connections	V
	Stability				Frame pinned connections	
	Climatic loads				Grid pinned connections	
	Prestressing				Bolted diagonal connections	
	Pipelines				Expert system	
	Structural model	\checkmark	_		Connection monodrawings	7
	BIM properties		Ξ		Scaffolding	
	Parameters				LTB 2nd Order	
	Mobile loads				ArcelorMittal	
	Automated GA drawings			E	Concrete	
	LTA - load cases				Fire resistance	
	Composite				Hollow core slab	
	External application checks					
	Property modifiers					
	Bridge design					
	Customized design form		-			

When this option is activated and you have one or more connections in the project, you can right click on the screen and choose for the "Picture wizard":


And choose to generate "Steel connections monodrawings":

Picture generation wizards	
Generation wizard	- Description
Generate reinforcement schemes Steel connections monodrawings	Generator of pictures - drawings of steel connections
	- Preview
	<u>N</u> ext <u>Q</u> ose

When the drawings are finished, they can be found in the Picture gallery:

And here all generated pictures can be found:

8.4.6. Options in the properties window

Load case/Combination

Properties	.
Steel Connection (1)	🧧 Va V/ 🖉
	e 2
Name	Conn
Node	N2
Type of loads	Combinations
Combinations	CO1 - ULS
Load case/Combination	All
Frame type	All
Connection geometry	Extreme N,V,M
Cida SID21	

All

All combinations are checked.

Extreme N,V,M

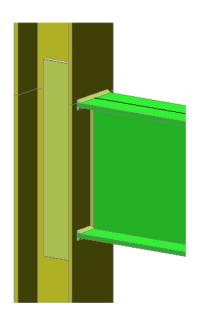
In this case only 6 combinations are checked, more specific the combinations results in the biggest positive and biggest negative value for N, V and M.

Those biggest values are not combined together, but always with the real internal forces. This check will go a bit faster than when choosing for "All".

With the option All, it is possible that not the biggest moment or biggest normal check will cause the biggest check, but a combination of the two smaller values in another combination. This check will not be shown when choosing for "Extreme N,V,M".

9. Welded connections

In this chapter we will show the calculation of a welded connection using example **CON_005.esa**, node N3.


The calculation is done with the Safety factors according the EN 1993-1-8 (Ref.[1]) and the following internal forces:

According to EN 1993-1-8 National annex: Standard EN

Dortial	orfety	factors	
		Tacions	
Gamma	MO		1.00
Gamma	M1		1.00
Gamma	M2		1.25
Gamma	M3		1.25

1.Internal forces

tert		
N	147.75	kN
Vz	85.00	kN
My	-123.03	kNm

Tension top

A negative moment will result in tension at the top flange of the beam.

Calculation Vwp,Rd: Column web panel in shear

$$V_{wp,Rd} = \frac{0.9 f_y A_{vc}}{\sqrt{3} \gamma_{M0}}$$

When a web doubler is used:

 $\begin{aligned} A_{vc} &= A_{vc} + b_s t_s \\ A_{vc} &= A - 2bt_f + (t_w + 2r)t_f \\ A_{vc} &= 13140 - 2 \cdot 280 \cdot 18 + (10.5 + 2 \cdot 24)18 \\ A_{vc} &= 4113mm^2 \\ A_{vc} &= 4113 + 172 \cdot 10.5 = 5919mm^2 \\ \text{Vwp, Rd} &= \frac{0.9 \cdot 235 \cdot 5919}{\sqrt{3} \cdot 1.0} = 727,77kN \end{aligned}$

And the same is shown in SCIA Engineer:

2.1. Design resistance of basic components				
2.1.1. Column web panel in shear (EN 1993-1-8 art. 6.2.6.1)				

Column web in shear (Vwp,Rd) data		
Column web in shear (Vwp,Rd)	722.77	kN
Beta	1.00	
Avc	5919.00	mm^2

Calculation F_{c,wc,Rd}: Column web in compression

$$F_{c,wc,Rd} = \frac{\rho b_{eff} t_{wc} f_{y}}{\gamma_{M0}}$$

$$t_{wc} = 1.5t_{w} = 1.5 \cdot 10.5 = 15.75mm$$

$$b_{eff} = t_{fb} + 2\sqrt{2}a + 5(t_{fc} + r)$$

$$b_{eff} = 17.2 + 2\sqrt{2} \cdot 9 + 5(18 + 24) = 252,66mm$$

$$\rho = \rho_{1}$$

$$\rho_{1} = \frac{1}{\sqrt{1 + 1.3 \left(\frac{b_{eff} t_{wc}}{A_{vc}}\right)^{2}}} = 0.79$$

$$F_{c,wc,Rd} = \frac{0.79 \cdot 252,66 \cdot 15,75 \cdot 235}{1,0} = 674kN = 738,77kN$$

And in SCIA Engineer:

2.1.2. Column web in compression (EN 1993-1-8 art 6.2.6.2)

Column web in compression (Fc,wc,Rd) data		
Column web in compression (Fc,wc,Rd)	742.18	kN
beff,c,wc	252.66	mm
twc	15.75	mm
omega 1	0.79	
omega 2	0.55	
omega	0.79	
kwc	1.00	
lambda rel	0.44	
reduction factor for plate buckling	1.00	
dwc	196.00	mm

Calculation F_{c,fb,Rd}: Beam flange in compression

$$F_{c,fb,Rd} = \frac{M_{c,Rd}}{h_b - t_{fb}}$$
$$M_{c,Rd} = \frac{M_{pl,Rd}}{\gamma_{M0}} = \frac{655}{1.0} = 655kNm$$
$$F_{c,fb,Rd} = \frac{655000kNmm}{550 - 17.2} = 1229kN$$

In SCIA Engineer:

2.1.3. Beam flange and web in compression (EN 1993-1-8 art. 6.2.6.7)

Beam flange in compression (Fc,fb,Rd) data		
Beam flange in compression (Fc,fb,Rd)	1226.16	kN
section class	1	
Mc,Rd	653.30	kNm
hb-tfb	532.80	mm

Calculation F_{t,fc,Rd}: Column flange in bending

$$F_{c,fc,Rd} = (t_{wc} + 2r_c + 7kt_{fc})\frac{t_{wc}J_y}{\gamma_{M0}}$$
$$F_{c,fc,Rd} = (10.5 + 2 \cdot 24 + 7 \cdot 1 \cdot 18)\frac{17.20 \cdot 235}{1.0} = 745kN$$

In SCIA Engineer:

2.1.4. Column flange in bending (EN 1993-1-8 art.6.2.6.4)

(Ft,fc,Rd) data		
(Ft,fc,Rd)	745.75	kN
k	1.00	

Calculation F_{t,wc,Rd}: Column web in tension

$$F_{t,wc,Rd} = \frac{\rho b_{eff} t_{wc} f_y}{\gamma_{M0}}$$

$$t_{wc} = 1.4 t_w = 1.4 \cdot 10.5 = 14.7mm$$

$$b_{eff} = t_{fb} + 2\sqrt{2}a + 5(t_{fc} + r)$$

$$b_{eff} = 17.2 + 2\sqrt{2} \cdot 9 + 5(18 + 24) = 252mm$$

$$\rho = \rho_1$$

$$\rho_1 = \frac{1}{\sqrt{1 + 1.3\left(\frac{b_{eff} t_{wc}}{A_{vc}}\right)^2}} = 0.81$$

$$F_{t,wc,Rd} = \frac{0.81 \cdot 252 \cdot 14.7 \cdot 235}{1.0} = 705kN$$

In SCIA Engineer:

2.1.5. Column web in tension (EN 1993-1-8 art. 6.2.6.3)

(Ft,wc,Rd) data		
(Ft,wc,Rd)	709.84	kN
beff	252.66	mm
twc	14.70	mm
omega 1	0.81	
omega 2	0.57	
omega	0.81	

Calculation MRd : Design moment resistance

705 kN x 0.532 m = 375 kNm

In SCIA Engineer:

2.3. Determination of Mj,Rd According to EN 1993-1-8 Article 6.2.7.1 (4)

Mj,Rd data		
F	709.84	kN
h	532.80	mm
Mj,Rd	378.20	kNm

Calculation af

The weld size a_f is designed according to the resistance of the joint. The design force in the beam flange can be estimated as:

$$F_{Rd} = \frac{M_{Rd}}{h}$$
$$F_{Rd} = \frac{375}{0.532} = 705kN$$

The design resistance of the weld F_w shall be greater than the flange force F_{Rd} , multiplied by a factor γ . The value of the factor γ is:

 γ = 1.7 for sway frames γ = 1.4 for non sway frames

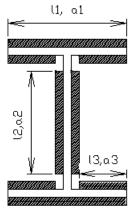
However, in no case shall the weld design resistance be required to exceed the design plastic resistance of the beam flange $N_{t,\text{Rd}}$:

$$N_{t,Rd} = \frac{b_f \cdot t_{fb} \cdot f_{yb}}{\gamma_{M_0}}$$
$$N_{t,Rd} = \frac{210 \cdot 17.2 \cdot 235}{1.0} = 849kN$$

 $F_w = min (N_{t.Rd}, \gamma F_{Rd}) = min (849, 1.4 \times 705) = 849 \text{ kN}$

The weld size design for a_f, using Annex M of EC3

$$a_{f} \geq \frac{F_{w} \cdot \gamma_{Mw} \cdot \beta_{W}}{f_{u} \cdot b_{f} \cdot \sqrt{2}}$$
$$a_{f} \geq \frac{849000 \cdot 1.25 \cdot 0.8}{360 \cdot 210 \cdot \sqrt{2}} = 7.94mm$$


We take a_f=9 mm.

In SCIA Engineer

6.1. Calculation weldsize af / Minimum thickness th for stiffener in column

data		
MRd	378.20	kNm
Gamma	1.40	
h	532.80	mm
FRd	993.78	kN
NT,Rd	848.82	kN
N	848.82	kN
Fu	360.00	MPa
BetaW	0.80	
minimum af	7.94	mm
af	9.00	mm
Minimum th	17.20	mm

Calculation of aw

The section is sollicitated by the moment M, the normal force N and the shear force D. The moment M is defined by the critical design moment resistance of the connection. The normal force N is taken as the maximum internal normal force on the node, the shear force D is taken as the maximum internal shear force on the node.

M = 375 kNmN = 148 kN D = 85 kN

(see calculation of MRd and the internal forces, given in the beginning of this chapter)

To determine the weld size a_2 in a connection, we use an iterative process with a_2 as parameter until the Von Mises rules is respected:

$$\begin{split} \sqrt{\sigma_1^2 + 3 \cdot \left(\tau_1^2 + \tau_2^2\right)} &\leq \frac{f_u}{\beta_w \cdot \gamma_{M_w}} \quad \text{and} \quad \sigma_1 \leq \frac{f_u}{\gamma_{M_w}} \\ \sigma_1 &= \tau_2 = \left(\frac{N}{A} + \frac{M \cdot l_2}{2 \cdot I}\right) \frac{1}{\sqrt{2}} \\ \tau_1 &= \frac{D}{2 \cdot a_2 \cdot l_2} \end{split}$$

With

the ultimate tensile strength of the weaker part the correlation factor βw the partial safety factor for welds γMw

In	SCIA	Engineer:
----	------	-----------

fu

data		
M	378.20	kN m
N	147.75	kN
V	85.00	kN
Fu	360.00	MPa
BetaW	0.80	
a1	9.00	mm
a3	9.00	mm
11	210.00	mm
12	450.40	mm
13	75.45	mm
A	7397.00	mm^2
1	481611467.86	mm^4
minimum aw (a2)	1.00	mm
aw	6.00	mm

10. Pinned joints

In SCIA Engineer four types of joints are supported :

Type 1	welded plate in beam, welded to column
Type 2	bolted plate in beam, welded to column
Туре 3	bolted angle in beam and column
Type 4	short endplate welded to beam, bolted in column

For each type, the design shear resistance V_{Rd} (taking into account the present normal force N) and the design compression/tension resistance N_{Rd} are calculated. The design shear resistance is calculated for the following failure modes:

- design shear resistance for the connection element
- design shear resistance of the beam
- design block shear resistance
- design shear resistance due to the bolt distribution in the beam web
- design shear resistance due to the bolt distribution in the column

The design compression/tension resistance is calculated for the following failure modes:

- design compression/tension resistance for the connection element
- design compression/tension resistance of the beam
- design tension resistance due to the bolt distribution in the column

In Ref.[2], more info on the used formulas is given.

10.1. Welded fin plate connection

In this chapter we will show the calculation of a welded fin plate connection using example **CON_009.esa**, node N2.


The calculation is done with the Safety factors according the EN 1993-1-8 (Ref.[1]) and the following internal forces:

The limit capacities are according to EN 1993-1-8

Partial	safety factors	
Gamma	MO	1.00
Gamma	M1	1.00
Gamma	M2	1.25
Gamma	M3	1.25

1.Internal forces

C1		
N	-1.44	kN
Vz	7.97	kN
My	0.00	kNm

Calculation Design Shear Resistance VRd for Connection Element

Transversal section of the plate: $A_{pl} = 2 \cdot h_{pl} \cdot t_{pl} = 0.003912m^2$ (2 plates)

Normal stress: $\sigma_N = \frac{N}{A_{pl}} = \frac{262.4939}{0.003912} = 67099.667 \frac{N}{m^2}$ Flexion module: $W_{pl} = 2 \cdot \frac{t_{pl} \cdot h_{pl}^2}{6} = 0.000106276m^3$

Design Shear Resistance: a = 0.082 m is the centre

$$V_{Rd} = \frac{-\frac{2 \cdot \sigma_{N} \cdot a}{W_{pl}} + \sqrt{\left(\frac{2 \cdot \sigma_{N} \cdot a}{W_{pl}}\right)^{2} - 4 \cdot \left(\frac{a^{2}}{N^{2}}\right) \cdot \left(\sigma_{N}^{2} - \frac{f_{y}^{2}}{\gamma_{M_{0}}^{2}}\right)}}{2 \cdot \left(\frac{a^{2}}{W_{pl}^{2}} + \frac{3}{A_{pl}^{2}}\right)} = 240087.66N = 240kN$$

Calculation Design Shear Resistance VRd for Beam

Shear Area : $A_v = A - 2 \cdot b \cdot t_f + (t_w + 2 \cdot r) \cdot t_f = 0.00191276m^2$ Shear Resistance : $VRd = \frac{A_v \cdot f_y}{\sqrt{3} \cdot \gamma_{M_0}} = 235925.57N = 236kN$

Calculation Design Tension Resistance NRd for Connection Element

Area of the element : $A_{pl} \,{=}\, 2 \cdot h_{pl} \cdot t_{pl} \,{=}\, 0.003912 m^2$

Tension Resistance : $N_{Rd} = \frac{A_{pl} \cdot f_y}{\gamma_{M_0}} = 835745.45N = 835kN$

Calculation Design Tension Resistance NRd for Beam

Area of the Beam : $A = 0.003910m^2$ Tension Resistance : $N_{Rd} = \frac{A \cdot f_y}{\gamma_{M_0}} = 835318.18N = 835kN$

Weld size Calculation for Plate, Beam and Column

To determine the weld size *a* for the plate on the beam and on the column, we must use a iterative process with *a* as parameter until the Von Mises rules is respected (Annex M/EC3):

$$\sqrt{\sigma_{_1}^2 + 3 \cdot \left(\tau_{_1}^2 + \tau_{_2}^2\right)} \leq \frac{f_u}{\beta_w \cdot \gamma_{M_w}} \quad \text{and} \quad \sigma_l \leq \frac{f_u}{\gamma_{M_w}}$$

We'll only check the weld size for the final value of *a*. For the weld between plate and beam we find a=4mm and for weld between plate and column, the weld size is a=10mm.

Weld size Plate/Beam

We define the play as the effective distance between the end of the beam and the flange of the column. In this case, the play is 10mm. By using EC3 and the Chapter 11 of the manual, we compute the following parameters:

Weld size: a=0.004

Weld Length: $l_1 = h_{pl} - 2 \cdot t_{pl} = 0.163 - 2 \cdot 0.12 = 0.139m$ $l_2 = b_{pl} - Play - 2 \cdot t_{pl} = 0.13m$ $l = l_{pl} - Play = 0.164 - 0.01 = 0.154m$

By EC3: f_{uw} =36000000N/m² and β_w =0.8. The parameters are:

$$g = \frac{(0.707 \cdot a \cdot l_1 + 0.577 \cdot a \cdot l_1) \cdot l}{0.577 \cdot a \cdot l_1 + 1.414 \cdot a \cdot l_2} = 104.10$$
$$\delta = \frac{0.577 \cdot a \cdot l_1}{0.577 \cdot a \cdot l_1 + 1.414 \cdot a \cdot l_2} = 0.30377$$

$$\begin{split} \mu &= \frac{0.117 \cdot a \cdot l_{1}^{2}}{0.117 \cdot a \cdot l_{1}^{2} + 0.577 \cdot a \cdot l_{2} \cdot h_{p1}} = 0.15603 \\ & \Gamma &= \frac{0.707 \cdot a \cdot l_{1}}{0.707 \cdot a \cdot l_{1} + 1.14 \cdot a \cdot l_{2}} = 0.3987 \\ & L &= 10 + g \end{split}$$
Shear force on one plate: $D &= \frac{V_{Rd}}{2} = 117962.789N \text{ (for one plate)}$
Normal force on one plate: $N = \frac{N}{2} = 131.24N$
Moment on the plate: $M = D \cdot L = 13459.781Nm$
 $\frac{Weld Check 1}{2}$: $\tau_{1} = \sigma_{1} = \frac{6 \cdot \mu \cdot M}{\sqrt{2} \cdot a \cdot l_{1}^{2}} + \frac{\Gamma \cdot N}{\sqrt{2} \cdot a \cdot l_{1}} = 115363040.74 \frac{N}{m^{2}} \\ & \tau_{2} = \frac{\delta \cdot D}{a \cdot l_{1}} = 64449431.72 \frac{N}{m^{2}} \end{split}$
Unity Check: $\frac{\sqrt{\sigma_{1}^{2} + 3 \cdot (\tau_{1}^{2} + \tau_{2}^{2})}}{f_{u}/\beta_{w} \cdot \gamma_{M_{w}}} = 0.316 \le 1 \text{ and } \frac{\sigma_{1}}{f_{u}/\gamma_{M_{w}}} = 0.4 \le 1$
 $\frac{Weld Check 2}{\sigma_{1}}$: $\sigma_{1} = \tau_{1} = \frac{(1 - \delta) \cdot D}{2 \cdot \sqrt{2} \cdot a \cdot l_{2}} = 55840293.8731 \frac{N}{m^{2}} \\ & \tau_{2} = \left(\frac{(1 - \mu) \cdot M}{h \cdot a \cdot l_{2}} + \frac{(1 - \Gamma) \cdot N}{2 \cdot a \cdot l_{2}}\right) = 134095932.161 \frac{N}{m^{2}} \end{split}$

hity Check:
$$\frac{\sqrt{\sigma_1^2 + 3 \cdot (\tau_1^2 + \tau_2^2)}}{\sigma_1 + \sigma_2} = 0.715 \le 1$$
 and $\frac{\sigma_1}{\sigma_1 + \sigma_2} = 0.193 \le 1$

Unity Check:
$$\frac{\sqrt{\sigma_1^2 + 3 \cdot (\tau_1^2 + \tau_2^2)}}{f_u / \beta_w \cdot \gamma_{M_w}} = 0.715 \le 1$$
 and $\frac{\sigma_1}{f_u / \gamma_{M_w}} = 0.19$

Weld size Plate/Column

Weld size: a=0.01 m Normal Force: N=262.4939N Moment: $M = D \cdot L = 235925.57 \cdot 0.082 = 19345.89674Nm$ Stress Calculation:

$$\sigma_{1} = -\tau_{1} = \frac{N}{2 \cdot \sqrt{2} \cdot a \cdot 1} + \frac{M}{W} = \frac{N}{2 \cdot \sqrt{2} \cdot a \cdot 1} + \frac{D \cdot L}{2 \cdot \sqrt{2} \cdot a \cdot \frac{h_{pl}^{2}}{6}} = 154518316.96 \text{ N/m}^{2}$$

$$\tau_{2} = \frac{D}{2 \cdot a \cdot 1} = 72369806.7485 \text{ N/m}^{2}$$

Unity Check:
$$\frac{\sqrt{\sigma_{1}^{2} + 3 \cdot (\tau_{1}^{2} + \tau_{2}^{2})}}{f_{u}/\beta_{w} \cdot \gamma_{M_{w}}} = 0.92 \le 1$$

$$\frac{\sigma_{1}}{f_{u}/\gamma_{M_{w}}} = 0.53 \le 1$$

10.2. Bolted fin plate connection

In this chapter we will show the calculation of a bolted fin plate connection using example **CON_010.esa, node N7**.

Calculation Design Shear Resistance VRd for Connection Element

Transversal section of the plate:

 $A = 2 \cdot h \cdot t = 2 \cdot 0.188 \cdot 0.012 = 0.004512m^2$ (2 plates)

Normal Stress:
$$\sigma_N = \frac{N}{A} = \frac{262.4939}{0.004512} = 58176.8395 \frac{N}{m^2}$$

Flexion Module : $W = 2 \cdot \frac{t \cdot h^2}{6} = 0.000141376m^3$

Bolt Centre : a=0.0995m

Design Shear Resistance:

$$V_{Rd} = \frac{-\frac{2 \cdot \sigma_N \cdot a}{W} + \sqrt{\left(\frac{2 \cdot \sigma_N \cdot a}{W}\right)^2 - 4 \cdot \left(\frac{a^2}{N^2}\right) \cdot \left(\sigma_N^2 - \frac{f_y^2}{\gamma_{M_0}^2}\right)}}{2 \cdot \left(\frac{a^2}{W^2} + \frac{3}{A^2}\right)} = 266422.015N = 266kN$$

Calculation Design Shear Resistance VRd for Beam

Shear Area : $A_v = A - 2 \cdot b \cdot t_f + (t_w + 2 \cdot r) \cdot t_f = 0.00191276m^2$ Net Area : $A_{net} = A_v - 2 \cdot t_w \cdot d_0 = 0.001689.56m$

For the calculation of VRd in the beam, we use A_v because $A_{net} \ge \frac{f_y}{f_u} \cdot A_v = 0.00124860 \text{m}^2$

Shear Resistance: VRd = $\frac{A_v \cdot f_y}{\sqrt{3} \cdot \gamma_{M_0}} = 235925.57$ N = 236kN

Calculation Design Tension Resistance NRd for Connection Element

Area : $A = 2 \cdot t \cdot h = 0.004512m^2$ Net Area : $A_{net} = A - 2 \cdot t \cdot 2 \cdot d_0 = 0.003648m^2$ Tension Resistance : $N_{Rd} = min \left(\frac{A \cdot f_y}{\gamma_{M_0}}, \frac{0.9 \cdot A_{net} \cdot f_u}{\gamma_{M_1}} \right) = min (963927.27, 1074501.81) = 963927.27N = 963kN$

Calculation Design Tension Resistance NRd for Beam

Area :
$$A = 0.003910m^2$$

Net Area : $A_{net} = A - 2 \cdot t \cdot d_0 = 0.0036868m^2$
Tension Resistance : $N_{Rd} = min\left(\frac{A \cdot f_y}{\gamma_{M_0}}, \frac{0.9 \cdot A_{net} \cdot f_u}{\gamma_{M_1}}\right)$
 $= min(835318.18,1085930.18) = 835318.18N = 836kN$

<u>Calculation Design Shear Resistance VRd for Bolt in Beam</u> The calculation of the shear resistance for bolt in beam is based on the following equation to be solve 1 >

$$\begin{split} V_{_{Rd}}^{2} \cdot & \left(\frac{1}{n^{2}} + \frac{a^{2} \cdot c^{2}}{I_{p}^{2}} + \frac{a^{2} \cdot d^{2}}{I_{p}^{2}}\right) + V_{Rd} \cdot \left(\frac{2 \cdot a \cdot N \cdot d}{I_{p} \cdot n}\right) + \frac{N^{2}}{n^{2}} - Q^{2} = 0 \\ \text{Where : } a = 0.0995 \text{m} b = 0.094 \text{m} c = 0.0655 \text{m} d = 0.07 \text{m} \\ I_{p} = \sum r_{i}^{2} = \sum_{i=1}^{4} 95.66^{2} = 0.036761 \text{m} \\ Q = \min\left(2 \cdot F_{v,Rd}, \min(F_{b,Rd,plate}; F_{b,Rd,beam})\right) = 31740.8256 \text{N for two plates, where} \\ \bullet F_{V_{Rd}} = \frac{0.6 \cdot f_{ub} \cdot A_{s}}{\gamma_{Mb}} = 30144 \text{N} = 30.1 \text{kN} \\ \bullet F_{b,Rd,Beam} = \frac{2.5 \cdot \alpha_{p} \cdot f_{u} \cdot d \cdot t}{\gamma_{Mb}} = 31740.8256 \text{N} = 31.7 \text{kN} \\ \text{with } \alpha_{p} = \min\left(\frac{e_{1}}{3d_{0}}; \frac{p_{1}}{3d_{0}} - \frac{1}{4}; \frac{f_{ub}}{f_{u}}; I\right) = 0.444 \\ \bullet F_{b,Rd,plate} = \frac{2.5 \cdot \alpha_{p} \cdot f_{u} \cdot d \cdot t_{pl}}{\gamma_{Mb}} = 122867.712 \text{N} \\ \text{with } \alpha_{p} = \min\left(\frac{e_{1}}{3d_{0}}; \frac{p_{1}}{3d_{0}} - \frac{1}{4}; \frac{f_{ub}}{f_{u}}; I\right) = 0.444 \end{split}$$

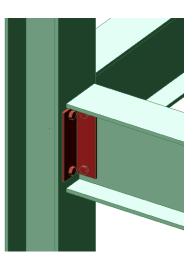
By solving the second-degree equation, we find VRd = 67907.89N = 67.9kN

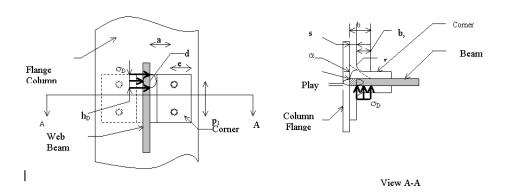
<u>Calculation Design Block Shear Resistance</u> The design value of the effective resistance to block shear is determined by the following expression :

$$V_{\text{eff,Rd}} = \frac{f_{y} \cdot A_{v,\text{eff}}}{\sqrt{3} \cdot \gamma_{M_{0}}} \quad \text{with } A_{v,\text{eff}} = t \cdot L_{v,\text{eff}}$$

We determined the effective shear area
$$A_{v,eff}$$
 as follows :
 $a_1 = 0.049m$ $a_2 = 0.155m$ $a_3 = 0.051m$
 $L_v = h - a_1 - a_2 = 0.14m$
 $L_3 = min\left(L_v + a_1 + a_3; (L_v + a_1 + a_3 - n \cdot d_0) \cdot \frac{f_u}{f_y}\right)$
 $= min(0.24; 0.2849) = 0.24m$

$$\begin{split} L_{1} &= \min(a_{1}; 5 \cdot d_{0}) = 0.049m \\ L_{2} &= \left(a_{2} - k \cdot d_{0}\right) \cdot \frac{f_{u}}{f_{y}} = 0.1685m \\ & \text{with } k = 2.5 \text{ for } 2 \text{ rows bolt} \\ L_{v,\text{eff}} &= \min(L_{v} + L_{1} + L_{2}; L_{3}) = 0.24m \\ A_{v,\text{eff}} &= 0.001488m^{2} \end{split}$$


$$V_{\rm eff,Rd} = \frac{f_{y} \cdot A_{v,\rm eff}}{\sqrt{3} \cdot \gamma_{\rm M0}} = 183534.40 \, \text{N} = 185 \, \text{kN}$$


10.3. Bolted cleat connection

In this chapter we will show the calculation of a bolted cleat connection using example **CON_011.esa**, node N2.

To determine the design shear resistance for bolts in the flange of the column, we use a iterative process with h_D as parameter until we reach a equilibrium :

$$\sigma_{\rm D} = min \left(\frac{f_{\rm y,beam}}{\gamma_{\rm M_0}}, \frac{f_{\rm y,cor}}{\gamma_{\rm M_0}} \right)$$

 $\label{eq:holdson} \begin{array}{ll} \mbox{We'll only consider the check for the final value of h_D. We have the following data:} \\ r = 0.008m & a = 0.03m & s = 0.006m \end{array}$

 $b = 0.4227 \cdot r + 1.577 \cdot s = 0.0128436m$ $h_D = 0.011m$

We compute: $K = \frac{a}{I_{p_D} - n \cdot a^2} = 1.0951$

s = 0.006m b_s = b - Play = 0.0028436m I_{pD} = $\sum r_{i_D}^2 = 0.029194m^2$

We define $x_j=0.03m$ and $z_j=0.165m$ respectively as the maximum horizontal distance between bolts and d and the maximum vertical distance between the bolts and d. It corresponds to the further bolts how is submitted to the higher force.

$$\begin{split} A &= \frac{1}{n} + K \cdot \left(a - x_j \right) = 0.5 \qquad \qquad B = K \cdot z_j = 0.18069 \\ Q &= \min \Biggl(F_{b,Rd}, F_{v,Rd} \cdot \Biggl(1 - \frac{N}{1.4 \cdot n \cdot F_{t,Rd}} \Biggr) \Biggr) = 16224N \quad \text{where:} \end{split}$$

$$F_{V_{Rd},cor} = \frac{0.6 \cdot f_{ub} \cdot A_s}{\gamma_{Mb}} = 16224N \text{ and } F_{t,Rd} = \frac{0.9 \cdot f_{ub} \cdot A_s}{\gamma_{Mb}} = 24336N$$

$$F_{b,Rd,cor} = \frac{2.5 \cdot \alpha_p \cdot f_u \cdot d \cdot t_{cor}}{\gamma_{Mb}} = 22187.2N$$
with $\alpha_p = \min\left(\frac{e_1}{3d_0}; \frac{p_1}{3d_0} - \frac{1}{4}; \frac{f_{ub}}{f_u}; 1\right) = 0.428$

$$F_{b,Rd,flange} = \frac{2.5 \cdot \alpha_p \cdot f_u \cdot d \cdot t_{flange}}{\gamma_{Mb}} = 77.8kN$$
with $\alpha_p = \min\left(\frac{e_1}{3d_0}; \frac{p_1}{3d_0} - \frac{1}{4}; \frac{f_{ub}}{f_u}; 1\right) = 1.0$

With those values, we have:

$$V_{Rd,ColFlange} = \frac{2 \cdot Q}{\sqrt{A^2 + B^2}} = 61032.94N \qquad \sum Q_h = V_{Rd} \cdot K \cdot \sum z_j = 5948.64N$$
$$\sigma_D = \frac{\sum Q_h}{h_D \cdot b_D} = 209194259.89 \frac{N}{m^2}$$

10.4. Flexible end plate connection

An example of this connection can be found in example CON_012.esa, node N2.

References and literature

- [1] Eurocode 3 Design of steel structures Part 1 - 8 : Design of joints EN 1993-1-8: 2005
- [2] SCIA Engineer Steel_Connections_Theory_enu.pdf Theoretical Background of SCIA Engineer Release : 13.0